Locally recoverable code: Difference between revisions

Content deleted Content added
Line 156:
 
'''Theorem''' The minimum [[Hamming distance|distance]] of <math>[n,k,d]_q</math>-LRC having locality <math>r</math> and availability <math>t</math> satisfies the [[Upper and lower bounds|upper bound]]
<mathdiv displaystyle="blocktext-align: center;"><math>d \leq n - \sum_{i=0}^t \left\lfloor\frac{k-1}{r^i}\right\rfloor.</math></div>
If the code is [[Systematic code|systematic]] and locality and availability apply only to its information symbols, then the code has information locality <math>r</math> and availability <math>t</math>, and is called <math>(r,t)_i</math>-LRC.<ref>{{Citation |first1=I. |last1=Tamo |first2=A. |last2=Barg |contribution=Bounds on locally recoverable codes with multiple recovering sets |pages=691–695 |___location=Honolulu, HI, USA |title=2014 IEEE International Symposium on Information Theory |date=2014 |doi=10.1109/ISIT.2014.6874921|arxiv=1402.0916 |isbn=978-1-4799-5186-4 }}</ref>
 
'''Theorem'''<ref>{{Citation
|first1=A. |last1=Wang |first2=Z. |last2=Zhang |title=Repair locality with multiple erasure tolerance |pages=6979–6987 |journal=IEEE Transactions on Information Theory |date=2014 |volume=60 |issue=11 |doi=10.1109/TIT.2014.2351404|arxiv=1306.4774 }}</ref> The minimum [[Hamming distance|distance]] <math>d</math> of an <math>[n,k,d]_q</math> linear <math>(r,t)_i</math>-LRC satisfies the [[Upper and lower bounds|upper bound]]
<mathdiv displaystyle="blocktext-align: center;"><math>d \leq n-k-\left\lceil\frac{t(k-1)+1}{t(r-1)+1}\right\rceil+2.</math></div>
 
== References ==