Content deleted Content added
Reverted good faith edits by 189.94.8.137 (talk): The original text is OK, 2 and 3 are prime |
→top: Classical computer. Tags: Mobile edit Mobile app edit Android app edit App section source |
||
Line 3:
{{unsolved|computer science|Can integer factorization be solved in polynomial time on a classical computer?}}
In [[mathematics]], '''integer factorization''' is the decomposition of a [[positive integer]] into a [[Product (mathematics)|product]] of integers. Every positive integer greater than 1 is either the product of two or more integer [[divisor|factors]] greater than 1, in which case it is
To factorize a small integer {{mvar|n}} using mental or pen-and-paper arithmetic, the simplest method is [[trial division]]: checking if the number is divisible by prime numbers {{math|2}}, {{math|3}}, {{math|5}}, and so on, up to the [[square root]] of {{mvar|n}}. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves [[primality test|testing whether each factor is prime]] each time a factor is found.
When the numbers are sufficiently large, no efficient non-[[quantum computer|
Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are [[semiprime]]s, the product of two prime numbers. When they are both large, for instance more than two thousand [[bit]]s long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by [[Fermat's factorization method]]), even the fastest prime factorization algorithms on the fastest classical computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any classical computer increases drastically.
Many cryptographic protocols are based on the presumed difficulty of factoring large composite integers or a related problem—for example, the [[RSA problem]]. An algorithm that efficiently factors an arbitrary integer would render [[RSA (algorithm)|RSA]]-based [[public-key]] cryptography insecure.
== Prime decomposition ==
|