Partition function (number theory): Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit
Bagelfoc (talk | contribs)
m Generating function: Make generating function formula more concise so that it is not displayed awkwardly on smaller screen sizes.
Line 29:
<math display="block">\begin{align}
\sum_{n=0}^\infty p(n)x^n &= \prod_{k=1}^\infty \left(\frac {1}{1-x^k} \right)\\
&=\left(1+x+x^2+x^3+\cdots\right) \left(1+x^2+x^4+x^6+\cdots\right)
\left(1+x^3+x^6+x^9+\cdots\right) \cdots \\
&=\frac{1}{1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - \cdots}\\
&=1 \Big/ \sum_{k=-\infty}^{\infty} (-1)^k x^{k(3k-1)/2}.