Content deleted Content added
Counterintuitive, possibly incorrect definition/proof of minimal distance being equal to minimal weight. |
request citation for unstable information |
||
Line 45:
Then the minimum distance <math>d</math> of the code <math>C</math> is defined as
:<math>d := \min_{m_1,m_2\in\Sigma^k\atop m_1\neq m_2} \Delta[C(m_1),C(m_2)]</math>.
Since any code has to be [[injective]], any two codewords will disagree in at least one position, so the distance of any code is at least <math>1</math>. Besides, the '''distance''' equals the '''[[Hamming weight#Minimum weight|minimum weight]]''' for linear block codes because:{{cn|date=December 2024}}
:<math>\min_{m_1,m_2\in\Sigma^k\atop m_1\neq m_2} \Delta[C(m_1),C(m_2)] = \min_{m_1,m_2\in\Sigma^k\atop m_1\neq m_2} \Delta[\mathbf{0},C(m_2)-C(m_1)] = \min_{m\in\Sigma^k\atop m\neq\mathbf{0}} w[C(m)] = w_\min</math>.
|