Content deleted Content added
Maxeto0910 (talk | contribs) m no sentence Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
Altered template type. Add: series, chapter, title. | Use this tool. Report bugs. | #UCB_Gadget |
||
Line 10:
A [[complexity class]] is a collection of [[computational problem]]s that can be solved by a computational model under certain resource constraints. For instance, the complexity class [[P (complexity)|P]] is defined as the set of problems solvable by a [[Turing machine]] in [[polynomial time]]. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the [[Quantum circuit|quantum circuit model]] or the equivalent [[quantum Turing machine]]. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as [[P (complexity)|P]], [[NP (complexity)|NP]], [[BPP (complexity)|BPP]], and [[PSPACE]].
One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].<ref name=":02">{{Cite
Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are <math>O(T(n))</math>, <math>\Omega(T(n))</math>, and <math>\Theta(T(n))</math>. <math>O(T(n))</math> expresses that something is bounded above by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, <math>\Omega(T(n))</math> expresses that something is bounded below by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, and <math>\Theta(T(n))</math> expresses both <math>O(T(n))</math> and <math>\Omega(T(n))</math>.<ref name=":12">{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}</ref> These notations also have their own names. <math>O(T(n))</math> is called [[Big O notation]], <math>\Omega(T(n))</math> is called Big Omega notation, and <math>\Theta(T(n))</math> is called Big Theta notation.
|