High-dynamic-range rendering: Difference between revisions

Content deleted Content added
This article did not make clear that HDRR was originally (and still usually) tone-mapping the resulting render onto a SDR display. Made a pass at discussing HDR displays in the relevant sections, reducing or eliminating the need for tone mapping, and resulting in a more realistic image than original HDRR.
m simplify link
Line 1:
{{Short description|Rendering of computer graphics scenes by using lighting calculations done in high-dynamic-range}}
[[File:Lost Coast HDR comparison.png|thumb|300px|right|A comparison of the standard fixed-aperture rendering (left) with the HDR rendering (right) in the video game ''[[Half-Life 2: Lost Coast]].'' The HDRR was tone mapped to SDR for broad compatibility with almost all displays.]]
 
'''High-dynamic-range rendering''' ('''HDRR''' or '''HDR rendering'''), also known as '''high-dynamic-range lighting''', is the [[Rendering (computer graphics)|rendering]] of [[computer graphics]] scenes by using [[computer graphics lighting|lighting]] calculations done in [[high dynamic range]] (HDR). This allows preservation of details that may be lost due to limiting [[contrast ratio]]s. [[Video game]]s and [[Computer animation|computer-generated movies and special effects]] benefit from this as it creates more realistic scenes than with more simplistic lighting models. HDRR was originally required to [[Tone mapping|tone map]] the rendered image onto [[Standard-dynamic-range video|Standard Dynamic Range]] (SDR) displays, as the first [[High-dynamic-range television#Displays|HDR capable displays]] did not arrive until the 2010s. However if a modern HDR display is available, it is possible to instead display the HDRR with even greater contrast and realism.
 
Line 98 ⟶ 99:
 
===Output to displays===
Although many manufacturers claim very high numbers, [[plasma displays]], [[liquid-crystal display]]s, and [[Cathode ray tube|CRT displaysdisplay]]s can deliver only a fraction of the contrast ratio found in the real world, and these are usually measured under ideal conditions.{{Citation needed|date=February 2015}} The simultaneous contrast of real content under normal viewing conditions is significantly lower.
 
Some increase in dynamic range in LCD monitors can be achieved by automatically reducing the backlight for dark scenes. For example, LG calls this technology "Digital Fine Contrast";<ref>[http://www.lge.com/about/press_release/detail/PRO%7CNEWS%5EPRE%7CMENU_20075_PRE%7CMENU.jhtml Digital Fine Contrast]</ref> Samsung describes it as "dynamic contrast ratio". Another technique is to have an array of brighter and darker LED backlights, for example with systems developed by BrightSide Technologies.<ref>[http://www.dolby.com/promo/hdr/technology.html BrightSide Technologies is now part of Dolby -] {{webarchive|url=https://web.archive.org/web/20070910145331/http://www.dolby.com/promo/hdr/technology.html |date=2007-09-10 }}</ref>