Lemniscate elliptic functions: Difference between revisions

Content deleted Content added
m Specific values: <math display="block"> \begin{array} \left( \right)
Tag: Reverted
m Specific values: <math display="block"> \begin{array}
Tag: Reverted
Line 1,011:
 
That table shows the most important values of the '''Hyperbolic Lemniscate Tangent and Cotangent''' functions:
<math display="block">
{| class="wikitable"
\begin{array}{|c|rr|ll|}
!<math>z</math>
z
!<math> \operatorname{clh} z</math>
!<math>& \operatorname{slhclh} z</math>
!<math>& \operatorname{ctlh} z = \cos_{4slh} z</math>
!<math>& \operatorname{tlhctlh} z = \sin_cos_{4} z</math>
& \operatorname{tlh} z = \sin_{4} z
|-
\\
|<math> 0</math>
\hline
|<math> \infty</math>
0
|<math> 0</math>
& \infty
|<math> 1</math>
& 0
|<math> 0</math>
& 1
|-
& 0
|<math> {\tfrac14}\sigma</math>
\\
|<math> 1</math>
|<math> {\tfrac14}\sigma</math>
|<math> 1</math>
& 1
|<math> 1\big/\sqrt[4]{2}</math>
& 1
|<math> 1\big/\sqrt[4]{2}</math>
|<math>& 1\big/\sqrt[4]{2}</math>
|-
|<math>& 1\big/\sqrt[4]{2}</math>
|<math> {\tfrac12}\sigma</math>
\\
|<math> 0</math>
|<math> {\tfrac12}\sigma</math>
|<math> \infty</math>
& 0
|<math> 0</math>
& \infty
|<math> 1</math>
& 0
|-
& 1
|<math> {\tfrac34}\sigma</math>
\\
|<math> -1</math>
|<math> {\tfrac34}\sigma</math>
|<math> -1</math>
& -1
|<math> -1\big/\sqrt[4]{2}</math>
& -1
|<math> 1\big/\sqrt[4]{2}</math>
|<math>& -1\big/\sqrt[4]{2}</math>
|-
|<math>& 1\big/\sqrt[4]{2}</math>
|<math> \sigma</math>
\\
|<math> \infty</math>
\sigma
|<math> 0</math>
& \infty
|<math> -1</math>
& 0
|<math> 0</math>
& -1
|}
& 0
\end{array}
!<math>z</math>
 
=== Combination and halving theorems ===