Content deleted Content added
Johnjbarton (talk | contribs) move the paragraph on Zurek's work to the section on decoherence. |
Johnjbarton (talk | contribs) →Quantum decoherence: integrate the moved paragraph with the preceding content. |
||
Line 70:
Quantum decoherence explains why a system interacting with an environment transitions from being a [[Quantum state#Pure states as rays in a complex Hilbert space|pure state]], exhibiting superpositions, to a [[Quantum state#Mixed states|mixed state]], an incoherent combination of classical alternatives.<ref name="Stanford1" /> This transition is fundamentally reversible, as the combined state of system and environment is still pure, but for all practical purposes irreversible in the same sense as in the [[second law of thermodynamics]]: the environment is a very large and complex quantum system, and it is not feasible to reverse their interaction. Decoherence is thus very important for explaining the [[classical limit]] of quantum mechanics, but cannot explain wave function collapse, as all classical alternatives are still present in the mixed state, and wave function collapse selects only one of them.<ref name=Schlosshauer/><ref>{{cite journal |author1=Wojciech H. Zurek |title=Decoherence, einselection, and the quantum origins of the classical |journal=Reviews of Modern Physics |date=2003 |volume=75 |issue=3 |page=715 |doi=10.1103/RevModPhys.75.715 |arxiv=quant-ph/0105127 |bibcode=2003RvMP...75..715Z |s2cid=14759237 }}</ref><ref name="Stanford1" />
| last = Fine
| first = Arthur
|