Content deleted Content added
→Brief illustration and overview of the concept: Insert missing sums over r in display formula on \Delta S; improve explanation of this equation. |
→Brief illustration and overview of the concept: Add more explanations to part on time invariance, state T<<tau upfront. |
||
Line 60:
More general cases follow the same idea:{{bulleted list
| When more coordinates <math>q_r</math> undergo a symmetry transformation <math>q_r \mapsto q_r + \varphi_r</math>, their effects add up by linearity to a conserved quantity <math display="inline">\sum_r \left(\partial L/\partial \dot{q}_r\right)\varphi_r</math>.
|
<math display="block">\Delta S \approx
\pm \left(TL + \int \sum_r \frac{\partial L}{\partial \dot{q}_r}\Delta \dot{q}_r\right) \approx
\pm T \left(L - \sum_r \frac{\partial L}{\partial \dot{q}_r}\dot{q}_r\right).
</math>
The first term is due to
| Finally, when instead of a trajectory <math>q(t)</math> entire fields <math>\psi(q_r,t)</math> are considered, the argument replaces
* the interval <math>[t_0,t_1]</math> with a bounded region <math>U</math> of the <math>(q_r,t)</math>-___domain,
|