Deep reactive-ion etching: Difference between revisions

Content deleted Content added
add link
ce
Line 31:
* in flexible electronics, DRIE is used to make traditional monolithic CMOS devices flexible by reducing the thickness of silicon substrates to few to tens of micrometers.<ref>{{ cite journal | last1= Ghoneim | first1= Mohamed | first2=Nasir | last2=Alfaraj | first3=Galo | last3=Torres-Sevilla | first4=Hossain | last4=Fahad | first5=Muhammad | last5=Hussain | title=Out-of-Plane Strain Effects on Physically Flexible FinFET CMOS | journal=IEEE Transactions on Electron Devices | volume= 63 | issue= 7 | pages= 2657–2664 | date= July 2016 | doi=10.1109/ted.2016.2561239| hdl= 10754/610712 | bibcode= 2016ITED...63.2657G | s2cid= 26592108 | hdl-access=free }}</ref><ref>{{ cite journal | first1= Mohamed T. | last1= Ghoneim | first2= Muhammad M. | last2= Hussain | title=Review on physically flexible nonvolatile memory for internet of everything electronics | journal= Electronics | volume= 4 | issue= 3 | pages= 424–479 | date=23 July 2015 | arxiv= 1606.08404 | doi= 10.3390/electronics4030424 | s2cid= 666307 | doi-access= free }}</ref><ref>{{cite journal | first1= Mohamed T. | last1= Ghoneim | first2= Muhammad M. | last2= Hussain | title=Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric | journal=Applied Physics Letters | date=3 August 2015 | doi=10.1063/1.4927913 | volume=107 | issue= 5 | page=052904| hdl= 10754/565819 | url=https://repository.kaust.edu.sa/bitstream/10754/565819/1/1.4927913.pdf | bibcode= 2015ApPhL.107e2904G | hdl-access=free }}</ref><ref>{{cite journal | first1=Mohamed T. | last1=Ghoneim | first2=Jhonathan P. | last2=Rojas | first3=Chadwin D. | last3=Young | first4=Gennadi | last4=Bersuker | first5=Muhammad M. | last5=Hussain | title=Electrical Analysis of High Dielectric Constant Insulator and Metal Gate Metal Oxide Semiconductor Capacitors on Flexible Bulk Mono-Crystalline Silicon | journal= IEEE Transactions on Reliability | volume=64 | issue=2 | pages=579–585 | date=26 November 2014 | doi=10.1109/TR.2014.2371054 | s2cid=11483790 | url=https://figshare.com/articles/journal_contribution/5048398 }}</ref><ref>{{cite journal | first1=Mohamed T. | last1=Ghoneim | first2=Mohammed A. | last2=Zidan | first3=Mohammed Y. | last3=Alnassar | first4=Amir N. | last4=Hanna | first5=Jurgen | last5= Kosel | first6=Khaled N. | last6=Salama | first7=Muhammad | last7=Hussain | title=Flexible Electronics: Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications | journal=Advanced Electronic Materials | date=15 June 2015 | doi=10.1002/aelm.201500045 | volume=1 | issue=6 | page=1500045| s2cid=110038210 | url=https://figshare.com/articles/journal_contribution/5048353 }}</ref><ref>{{cite journal | first1=Mohamed T. | last1=Ghoneim |first2=Arwa | last2=Kutbee | first3=Farzan | last3=Ghodsi | first4=G. |last4=Bersuker | first5=Muhammad M. | last5=Hussain | title=Mechanical anomaly impact on metal–oxide–semiconductor capacitors on flexible silicon fabric | journal= Applied Physics Letters | date=9 June 2014 | doi=10.1063/1.4882647 | volume=104 | issue=23 | page=234104| hdl=10754/552155 | url=http://repository.kaust.edu.sa/kaust/bitstream/10754/552155/1/1.4882647.pdf | bibcode=2014ApPhL.104w4104G | s2cid=36842010 | hdl-access=free }}</ref>
 
DRIE is distinguished from RIE fromby its etch depth. Practical etch depths for RIE (as used in [[integrated circuit|IC]] manufacturing) would be limited to around 10&nbsp;μm at a rate up to 1&nbsp;μm/min, while DRIE can etch features much greater, up to 600&nbsp;μm or more with rates up to 20&nbsp;μm/min or more in some applications.
 
DRIE of glass requires high plasma power, which makes it difficult to find suitable mask materials for truly deep etching. Polysilicon and nickel are used for 10–50&nbsp;μm etched depths. In DRIE of polymers, Bosch process with alternating steps of SF<sub>6</sub> etching and C<sub>4</sub>F<sub>8</sub> passivation take place. Metal masks can be used, however they are expensive to use since several additional photo and deposition steps are always required. Metal masks are not necessary however on various substrates (Si [up to 800&nbsp;μm], InP [up to 40&nbsp;μm] or glass [up to 12&nbsp;μm]) if using chemically amplified negative resists.