Data analysis: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 5:
'''Data analysis''' is the process of inspecting, [[Data cleansing|cleansing]], [[Data transformation|transforming]], and [[Data modeling|modeling]] [[data]] with the goal of discovering useful information, informing conclusions, and supporting [[decision-making]].<ref name="Auerbach Publications">{{Citation|title=Transforming Unstructured Data into Useful Information|date=2014-03-12|url=http://dx.doi.org/10.1201/b16666-14|work=Big Data, Mining, and Analytics|pages=227–246|publisher=Auerbach Publications|doi=10.1201/b16666-14|isbn=978-0-429-09529-0|access-date=2021-05-29}}</ref> Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains.<ref>{{Citation|title=The Multiple Facets of Correlation Functions|url=http://dx.doi.org/10.1017/9781108241922.013|work=Data Analysis Techniques for Physical Scientists|year=2017|pages=526–576|publisher=Cambridge University Press|doi=10.1017/9781108241922.013|isbn=978-1-108-41678-8|access-date=2021-05-29}}</ref> In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively.<ref>Xia, B. S., & Gong, P. (2015). Review of business intelligence through data analysis. ''Benchmarking'', ''21''(2), 300-311. {{doi|10.1108/BIJ-08-2012-0050}}</ref>
 
[[Data mining]] is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while [[business intelligence]] covers data analysis that relies heavily on aggregation, focusing mainly on business information.<ref>[https://web.archive.org/web/20171018181046/https://spotlessdata.com/blog/exploring-data-analysis Exploring Data Analysis]</ref> In statistical applications, data analysis can be divided into [[descriptive statistics]], [[exploratory data analysis]] (EDA), and [[Statistical hypothesis testing|confirmatory data analysis]] (CDA).<ref>{{Citation|title=Data Coding and Exploratory Analysis (EDA) Rules for Data Coding Exploratory Data Analysis (EDA) Statistical Assumptions|date=2004-08-16|url=http://dx.doi.org/10.4324/9781410611420-6|work=SPSS for Intermediate Statistics|pages=42–67|publisher=Routledge|doi=10.4324/9781410611420-6|isbn=978-1-4106-1142-0|access-date=2021-05-29}}</ref> EDA focuses on discovering new features in the data while CDA focuses on confirming orand falsifying existing [[hypotheses]].<ref>{{Cite journal|date=2014-10-01|title=New European ICT call focuses on PICs, lasers, data transfer|url=http://dx.doi.org/10.1117/2.4201410.10|journal=SPIE Professional|doi=10.1117/2.4201410.10|issn=1994-4403|last1=Spie }}</ref><ref>{{Cite book|last1=Samandar|first1=Petersson|first2=Sofia|last2=Svantesson|title=Skapandet av förtroende inom eWOM : En studie av profilbildens effekt ur ett könsperspektiv|date=2017|publisher=Högskolan i Gävle, Företagsekonomi|oclc=1233454128}}</ref> [[Predictive analytics]] focuses on the application of statistical models for predictive forecasting or classification, while [[text analytics]] applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a species of [[unstructured data]]. All of the above are varieties of data analysis.<ref>{{Cite journal|last=Goodnight|first=James|date=2011-01-13|title=The forecast for predictive analytics: hot and getting hotter|url=http://dx.doi.org/10.1002/sam.10106|journal=Statistical Analysis and Data Mining: The ASA Data Science Journal|volume=4|issue=1|pages=9–10|doi=10.1002/sam.10106|s2cid=38571193 |issn=1932-1864}}</ref>
 
[[Data integration]] is a precursor to data analysis, and data analysis is closely linked to [[Data and information visualization|data visualization]] and data dissemination.<ref>{{Cite book|last=Sherman|first=Rick|url=https://www.worldcat.org/oclc/894555128|title=Business intelligence guidebook: from data integration to analytics|date=4 November 2014|isbn=978-0-12-411528-6|___location=Amsterdam|oclc=894555128}}</ref>