Content deleted Content added
m Deduplicate reference |
Citation bot (talk | contribs) Add: doi, page, volume, journal, bibcode, issue. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Classes of computers | #UCB_Category 59/91 |
||
Line 80:
{{main|Swarm robotics|swarm intelligence}}
[[Swarm robotics]] is a field of study that focuses on the coordination and control of multiple robots as a system. Inspired by the emergent behavior observed in social insects, swarm robotics involves the use of relatively simple individual rules to produce complex group behaviors through local communication and interaction with the environment.<ref>{{Cite journal|title=Swarm Robotics|last1=Dorigo|first1=Marco|last2=Birattari|first2=Mauro|last3=Brambill|first3=Manuele|date=2014|journal=Scholarpedia|volume=9 |issue=1 |page=1463 |doi=10.4249/scholarpedia.1463 |doi-access=free |bibcode=2014SchpJ...9.1463D |language=en-UK}}</ref> This approach is characterized by the use of large numbers of simple robots and promotes scalability through the use of local communication methods such as radio frequency or infrared.
==Physics approaches==
Line 112:
=== Neuromorphic quantum computing ===
Neuromorphic Quantum Computing<ref>{{Cite journal |title=Neuromrophic Quantum Computing {{!}} Quromorphic Project {{!}} Fact Sheet {{!}} H2020 |url=https://cordis.europa.eu/project/id/828826 |access-date=2024-03-18 |website=CORDIS {{!}} European Commission |language=en |doi=10.3030/828826}}</ref><ref>{{Citation |last1=Pehle |first1=Christian |title=Neuromorphic quantum computing |date=2021-03-30 |arxiv=2005.01533 |last2=Wetterich |first2=Christof|journal=Physical Review E |volume=106 |issue=4 |page=045311 |doi=10.1103/PhysRevE.106.045311 |bibcode=2022PhRvE.106d5311P }}</ref> (abbreviated as 'n.quantum computing') is an unconventional type of computing that uses [[Neuromorphic engineering|neuromorphic computing]] to perform quantum operations. It was suggested that [[Quantum algorithm|quantum algorithms]], which are algorithms that run on a realistic model of [[Quantum computing|quantum computation]], can be computed equally efficiently with neuromorphic quantum computing.<ref>{{Cite journal |last1=Carleo |first1=Giuseppe |last2=Troyer |first2=Matthias |date=2017-02-10 |title=Solving the quantum many-body problem with artificial neural networks |url=https://www.science.org/doi/10.1126/science.aag2302 |journal=Science |language=en |volume=355 |issue=6325 |pages=602–606 |doi=10.1126/science.aag2302 |pmid=28183973 |issn=0036-8075|arxiv=1606.02318 |bibcode=2017Sci...355..602C }}</ref><ref>{{Cite journal |last1=Torlai |first1=Giacomo |last2=Mazzola |first2=Guglielmo |last3=Carrasquilla |first3=Juan |last4=Troyer |first4=Matthias |last5=Melko |first5=Roger |last6=Carleo |first6=Giuseppe |date=2018-02-26 |title=Neural-network quantum state tomography |url=https://www.nature.com/articles/s41567-018-0048-5 |journal=[[Nature Physics]] |language=en |volume=14 |issue=5 |pages=447–450 |doi=10.1038/s41567-018-0048-5 |issn=1745-2481|arxiv=1703.05334 |bibcode=2018NatPh..14..447T }}</ref><ref>{{Cite journal |last1=Sharir |first1=Or |last2=Levine |first2=Yoav |last3=Wies |first3=Noam |last4=Carleo |first4=Giuseppe |last5=Shashua |first5=Amnon |date=2020-01-16 |title=Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems |url=https://link.aps.org/doi/10.1103/PhysRevLett.124.020503 |journal=Physical Review Letters |volume=124 |issue=2 |pages=020503 |doi=10.1103/PhysRevLett.124.020503|pmid=32004039 |arxiv=1902.04057 |bibcode=2020PhRvL.124b0503S }}</ref><ref>{{Citation |last1=Broughton |first1=Michael |title=TensorFlow Quantum: A Software Framework for Quantum Machine Learning |date=2021-08-26 |arxiv=2003.02989 |last2=Verdon |first2=Guillaume |last3=McCourt |first3=Trevor |last4=Martinez |first4=Antonio J. |last5=Yoo |first5=Jae Hyeon |last6=Isakov |first6=Sergei V. |last7=Massey |first7=Philip |last8=Halavati |first8=Ramin |last9=Niu |first9=Murphy Yuezhen}}</ref><ref name="DiVentra2022">{{Citation |last=Di Ventra |first=Massimiliano |title=MemComputing vs. Quantum Computing: some analogies and major differences |date=2022-03-23 |arxiv=2203.12031}}</ref>
Both traditional [[quantum computing]] and neuromorphic quantum computing are physics-based unconventional computing approaches to computations and don't follow the [[von Neumann architecture]]. They both construct a system (a circuit) that represents the physical problem at hand, and then leverage their respective physics properties of the system to seek the "minimum". Neuromorphic quantum computing and [[quantum computing]] share similar physical properties during computation<ref name="DiVentra2022" /><ref>{{Cite journal |last1=Wilkinson |first1=Samuel A. |last2=Hartmann |first2=Michael J. |date=2020-06-08 |title=Superconducting quantum many-body circuits for quantum simulation and computing |url=https://doi.org/10.1063/5.0008202 |journal=Applied Physics Letters |volume=116 |issue=23 |doi=10.1063/5.0008202 |issn=0003-6951|arxiv=2003.08838 |bibcode=2020ApPhL.116w0501W }}</ref>.[[File:Схема криостата МФТИ.jpg|thumb|A quantum computer.]]
|