Content deleted Content added
Iiii I I I (talk | contribs) Reverted 1 edit by 103.85.38.55 (talk) to last revision by Kvng |
Fgnievinski (talk | contribs) |
||
Line 3:
{{Use mdy dates|date=October 2021}}
An '''AI accelerator''', '''deep learning processor''' or '''neural processing unit''' ('''NPU''') is a class of specialized [[hardware acceleration|hardware accelerator]]<ref>{{cite web |url=https://www.v3.co.uk/v3-uk/news/3014293/intel-unveils-movidius-compute-stick-usb-ai-accelerator |title=Intel unveils Movidius Compute Stick USB AI Accelerator |date=July 21, 2017 |access-date=August 11, 2017 |archive-url=https://web.archive.org/web/20170811193632/https://www.v3.co.uk/v3-uk/news/3014293/intel-unveils-movidius-compute-stick-usb-ai-accelerator |archive-date=August 11, 2017 }}</ref> or computer system<ref>{{cite web |url=https://insidehpc.com/2017/06/inspurs-unveils-gx4-ai-accelerator/ |title=Inspurs unveils GX4 AI Accelerator |date=June 21, 2017}}</ref><ref>{{citation |title=Neural Magic raises $15 million to boost AI inferencing speed on off-the-shelf processors |last=Wiggers |first=Kyle |date=November 6, 2019 |url=https://venturebeat.com/2019/11/06/neural-magic-raises-15-million-to-boost-ai-training-speed-on-off-the-shelf-processors/ |publication-date=November 6, 2019 |orig-date=2019 |archive-url=https://web.archive.org/web/20200306120524/https://venturebeat.com/2019/11/06/neural-magic-raises-15-million-to-boost-ai-training-speed-on-off-the-shelf-processors/ |archive-date=March 6, 2020 |access-date=March 14, 2020}}</ref> designed to accelerate [[artificial intelligence]] (AI) and [[machine learning]] applications, including [[artificial neural network]]s and [[computer vision]]. Typical applications include algorithms for [[robotics]], [[Internet of Things]], and other [[data (computing)|data]]-intensive or sensor-driven tasks.<ref>{{cite web |url=https://www.eetimes.com/google-designing-ai-processors/ |title=Google Designing AI Processors|date=May 18, 2016 }} Google using its own AI accelerators.</ref> They are often [[manycore]] designs and generally focus on [[precision (computer science)|low-precision]] arithmetic, novel [[dataflow architecture]]s or [[in-memory computing]] capability. {{As of|2024}}, a typical AI [[integrated circuit]] chip [[transistor count|contains tens of billions]] of [[MOSFET]]s.<ref>{{cite web|url=https://www.datacenterdynamics.com/en/news/nvidia-reveals-new-hopper-h100-gpu-with-80-billion-transistors/|title=Nvidia reveals new Hopper H100 GPU, with 80 billion transistors|last=Moss|first=Sebastian|date=2022-03-23|website=Data Center Dynamics|access-date=2024-01-30}}</ref>
AI accelerators are used in mobile devices such as Apple [[IPhone|iPhones]] and [[Huawei]] cellphones,<ref>{{Cite web|url=https://consumer.huawei.com/en/press/news/2017/ifa2017-kirin970|title=HUAWEI Reveals the Future of Mobile AI at IFA}}</ref> and personal computers such as [[Intel]] laptops,<ref>{{Cite web|url=https://www.intel.com/content/www/us/en/newsroom/news/intels-lunar-lake-processors-arriving-q3-2024.html|title=Intel's Lunar Lake Processors Arriving Q3 2024|website=Intel}}</ref> [[AMD]] laptops<ref>{{cite web|title=AMD XDNA Architecture|url=https://www.amd.com/en/technologies/xdna.html}}</ref> and [[Apple silicon]] [[Mac_(computer)|Macs]].<ref>{{Cite web |title=Deploying Transformers on the Apple Neural Engine |url=https://machinelearning.apple.com/research/neural-engine-transformers |access-date=2023-08-24 |website=Apple Machine Learning Research |language=en-US}}</ref> Accelerators are used in [[cloud computing]] servers, including [[tensor processing unit]]s (TPU) in [[Google Cloud Platform]]<ref>{{Cite journal|date=2017-06-24|title=In-Datacenter Performance Analysis of a Tensor Processing Unit|journal=ACM SIGARCH Computer Architecture News|volume=45|issue=2|pages=1–12|language=EN|doi=10.1145/3140659.3080246|doi-access=free |last1=Jouppi |first1=Norman P. |last2=Young |first2=Cliff |last3=Patil |first3=Nishant |last4=Patterson |first4=David |last5=Agrawal |first5=Gaurav |last6=Bajwa |first6=Raminder |last7=Bates |first7=Sarah |last8=Bhatia |first8=Suresh |last9=Boden |first9=Nan |last10=Borchers |first10=Al |last11=Boyle |first11=Rick |last12=Cantin |first12=Pierre-luc |last13=Chao |first13=Clifford |last14=Clark |first14=Chris |last15=Coriell |first15=Jeremy |last16=Daley |first16=Mike |last17=Dau |first17=Matt |last18=Dean |first18=Jeffrey |last19=Gelb |first19=Ben |last20=Ghaemmaghami |first20=Tara Vazir |last21=Gottipati |first21=Rajendra |last22=Gulland |first22=William |last23=Hagmann |first23=Robert |last24=Ho |first24=C. Richard |last25=Hogberg |first25=Doug |last26=Hu |first26=John |last27=Hundt |first27=Robert |last28=Hurt |first28=Dan |last29=Ibarz |first29=Julian |last30=Jaffey |first30=Aaron |display-authors=1 |arxiv=1704.04760 }}</ref> and [[Trainium]] and [[Inferentia]] chips in [[Amazon Web Services]].<ref>{{cite web | title = How silicon innovation became the 'secret sauce' behind AWS's success| website = Amazon Science| date = July 27, 2022| url = https://www.amazon.science/how-silicon-innovation-became-the-secret-sauce-behind-awss-success| access-date = July 19, 2024}}</ref> A number of vendor-specific terms exist for devices in this category, and it is an [[emerging technologies|emerging technology]] without a [[dominant design]].
|