Computational complexity of matrix multiplication: Difference between revisions

Content deleted Content added
rm conference url for reference that has been converted to journal version (last November by Citation bot); see User talk:Citation bot#Caps: TheoretiCS
fix Rosowski ref (was cite journal with no journal, just arxiv; add journal metadata)
Line 315:
===Minimizing number of multiplications===
 
Related to the problem of minimizing the number of arithmetic operations is minimizing the number of multiplications, which is typically a more costly operation than addition. A <math>O(n^\omega)</math> algorithm for matrix multiplication must necessarily only use <math>O(n^\omega)</math> multiplication operations, but these algorithms are impractical. Improving from the naive <math>n^3</math> multiplications for schoolbook multiplication, <math>4\times 4</math> matrices in <math>\mathbb{Z}/2\mathbb{Z}</math> can be done with 47 multiplications,<ref>See [https://www.nature.com/articles/s41586-022-05172-4/figures/6 Extended Data Fig. 1: Algorithm for multiplying 4 × 4 matrices in modular arithmetic (<math>\mathbb{Z}_{2}</math>)) with 47 multiplications] in {{Cite journal |title=Discovering faster matrix multiplication algorithms with reinforcement learning | year=2022 |language=en |doi=10.1038/s41586-022-05172-4| pmid=36198780 | last1=Fawzi | first1=A. | last2=Balog | first2=M. | last3=Huang | first3=A. | last4=Hubert | first4=T. | last5=Romera-Paredes | first5=B. | last6=Barekatain | first6=M. | last7=Novikov | first7=A. | last8=r Ruiz | first8=F. J. | last9=Schrittwieser | first9=J. | last10=Swirszcz | first10=G. | last11=Silver | first11=D. | last12=Hassabis | first12=D. | last13=Kohli | first13=P. | journal=Nature | volume=610 | issue=7930 | pages=47–53 | pmc=9534758 | bibcode=2022Natur.610...47F }}</ref> <math>3\times 3</math> matrix multiplication over a commutative ring can be done in 21 multiplications<ref>{{Citecite journal
| last = Rosowski | first = Andreas
| arxiv = 1904.07683
|date doi =2020-07-27 10.1016/j.jsc.2022.05.002
| journal = Journal of Symbolic Computation
| mr = 4433063
| pages = 302–321
| title = Fast Commutativecommutative Matrixmatrix Algorithmalgorithms
| volume = 114
|arxiv year =1904.07683 2023}}</ref><ref>{{cite journal |last1=Makarov |first1=O. M. |title=An algorithm for multiplying 3×3 matrices |journal=Zhurnal Vychislitel'noi Matematiki I Matematicheskoi Fiziki |volume=26 |issue=2 |year=1986 |pages=293–294 |url=https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=4056&option_lang=eng |access-date=5 October 2022}}
:Also in {{cite journal |doi=10.1016/0041-5553(86)90203-X |title=An algorithm for multiplying 3×3 matrices |year=1986 |last1=Makarov |first1=O. M. |journal=USSR Computational Mathematics and Mathematical Physics |volume=26 |pages=179–180 }}</ref> (23 if non-commutative<ref>{{Cite journal |last=Laderman |first=Julian D. |date=1976 |title=A noncommutative algorithm for multiplying 3×3 matrices using 23 multiplications |url=https://www.ams.org/bull/1976-82-01/S0002-9904-1976-13988-2/ |journal=Bulletin of the American Mathematical Society |language=en |volume=82 |issue=1 |pages=126–128 |doi=10.1090/S0002-9904-1976-13988-2 |issn=0002-9904|doi-access=free }}</ref>). The lower bound of multiplications needed is 2''mn''+2''n''−''m''−2 (multiplication of ''n''×''m''-matrices with ''m''×''n''-matrices using the substitution method, ''m''⩾''n''⩾3), which means n=3 case requires at least 19 multiplications and n=4 at least 34.<ref>{{Cite journal |last=Bläser |first=Markus |date=February 2003 |title=On the complexity of the multiplication of matrices of small formats |journal=Journal of Complexity |language=en |volume=19 |issue=1 |pages=43–60 |doi=10.1016/S0885-064X(02)00007-9|doi-access=free }}</ref> For n=2 optimal 7 multiplications 15 additions are minimal, compared to only 4 additions for 8 multiplications.<ref>{{Cite journal |last=Winograd |first=S. |date=1971-10-01 |title=On multiplication of 2 × 2 matrices |journal=Linear Algebra and Its Applications |language=en |volume=4 |issue=4 |pages=381–388 |doi=10.1016/0024-3795(71)90009-7 |issn=0024-3795|doi-access=free }}</ref><ref>{{Cite book |last=L. |first=Probert, R. |url=http://worldcat.org/oclc/1124200063 |title=On the complexity of matrix multiplication |date=1973 |publisher=University of Waterloo |oclc=1124200063}}</ref>