Content deleted Content added
Line 396:
In matrix formalism
<math display="block">Z(\beta) = \operatorname{Tr} \left(V^L\right) = \lambda_1^L + \lambda_2^L = \lambda_1^L \left[1 + \left(\frac{\lambda_2}{\lambda_1}\right)^L\right],</math>
where λ<sub>1</sub> is the highest eigenvalue of ''V'', while
<math display="block">\lambda_1 = e^{\beta J} \cosh \beta h + \sqrt{e^{2\beta J} (\cosh \beta h)^2 -2 \sinh 2 \beta J}=e^{\beta J} \cosh \beta h + \sqrt{e^{2\beta J} (\sinh \beta h)^2 -e^{-2\beta J}},</math>
and
<math display="block">Z_N \to (\lambda_1)^N = (2\cosh \beta h)^N,</math>
as the answer for the open-boundary Ising model.
|