Logarithmic integral function: Difference between revisions

Content deleted Content added
HannsEwald (talk | contribs)
m Series representation: inserted absolute value into log log(x) to make formula valid for x < 1
some fmt tweaks
Line 5:
In [[mathematics]], the '''logarithmic integral function''' or '''integral logarithm''' li(''x'') is a [[special function]]. It is relevant in problems of [[physics]] and has [[number theory|number theoretic]] significance. In particular, according to the [[prime number theorem]], it is a very good [[approximation]] to the [[prime-counting function]], which is defined as the number of [[prime numbers]] less than or equal to a given value <math>x</math>. [[Image:Logarithmic integral function.svg|thumb|right|300px|Logarithmic integral function plot]]
 
== Integral representation ==
The logarithmic integral has an integral representation defined for all positive [[real number]]s {{mvar|x}}&nbsp;≠&nbsp;1 by the [[integral|definite integral]]
: <math> \operatorname{li}(x) = \int_0^x \frac{dt}{\ln t}. </math>
 
Here, {{math|ln}} denotes the [[natural logarithm]]. The function {{math|1/(ln ''t'')}} has a [[mathematical singularity|singularity]] at {{math|1=''t'' = 1}}, and the integral for {{math|''x'' > 1}} is interpreted as a [[Cauchy principal value]],
: <math> \operatorname{li}(x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right).</math>
 
== Offset logarithmic integral ==
The '''offset logarithmic integral''' or '''Eulerian logarithmic integral''' is defined as
: <math> \operatorname{Li}(x) = \int_2^x \frac{dt}{\ln t} = \operatorname{li}(x) - \operatorname{li}(2). </math>
 
:<math> \operatorname{Li}(x) = \int_2^x \frac{dt}{\ln t} = \operatorname{li}(x) - \operatorname{li}(2). </math>
 
As such, the integral representation has the advantage of avoiding the singularity in the ___domain of integration.
 
Equivalently,
: <math> \operatorname{li}(x) = \int_0^x \frac{dt}{\ln t} = \operatorname{Li}(x) + \operatorname{li}(2). </math>
 
== Special values ==
:<math> \operatorname{li}(x) = \int_0^x \frac{dt}{\ln t} = \operatorname{Li}(x) + \operatorname{li}(2). </math>
 
==Special values==
The function li(''x'') has a single positive zero; it occurs at ''x'' ≈ 1.45136 92348 83381 05028 39684 85892 02744 94930... {{OEIS2C|A070769}}; this number is known as the [[Ramanujan–Soldner constant]].
 
<math>\textoperatorname{li}(\text{Li}^{-1}(0)) = \text{li}(2)</math> ≈ 1.045163 780117 492784 844588 889194 613136 522615 578151... {{OEIS2C|A069284}}
 
This is <math>-(\Gamma\left(0,-\ln 2\right) + i\,\pi)</math> where <math>\Gamma\left(a,x\right)</math> is the [[incomplete gamma function]]. It must be understood as the [[Cauchy principal value]] of the function.
 
== Series representation ==
The function li(''x'') is related to the ''[[exponential integral]]'' Ei(''x'') via the equation
: <math>\hboxoperatorname{li}(x)=\hbox{Ei}(\ln x) , \,\!</math>
 
:<math>\hbox{li}(x)=\hbox{Ei}(\ln x) , \,\!</math>
 
which is valid for ''x''&nbsp;>&nbsp;0. This identity provides a series representation of li(''x'') as
: <math> \operatorname{li}(e^u) = \hbox{Ei}(u) =
 
:<math> \operatorname{li}(e^u) = \hbox{Ei}(u) =
\gamma + \ln |u| + \sum_{n=1}^\infty {u^{n}\over n \cdot n!}
\quad \text{ for } u \ne 0 \;, , </math>
where ''γ'' ≈ 0.57721 56649 01532 ... {{OEIS2C|id=A001620}} is the [[Euler–Mascheroni constant]]. A more rapidly convergent series by [[Srinivasa Ramanujan|Ramanujan]] <ref>{{MathWorld | urlname=LogarithmicIntegral | title=Logarithmic Integral}}</ref> is
 
: <math>
where γ ≈ 0.57721 56649 01532 ... {{OEIS2C|id=A001620}} is the [[Euler–Mascheroni constant]]. A more rapidly convergent series by [[Srinivasa Ramanujan|Ramanujan]] <ref>{{MathWorld | urlname=LogarithmicIntegral | title=Logarithmic Integral}}</ref> is
 
:<math>
\operatorname{li}(x) =
\gamma
Line 55 ⟶ 49:
-->
 
== Asymptotic expansion ==
The asymptotic behavior for ''x''&nbsp;→&nbsp;∞ is
: <math> \operatorname{li}(x) = O \left( \frac{x }{\ln x} \right) . </math>
 
:<math> \operatorname{li}(x) = O \left( \frac{x }{\ln x} \right) . </math>
 
where <math>O</math> is the [[big O notation]]. The full [[asymptotic expansion]] is
: <math> \operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^\infty \frac{k!}{(\ln x)^k} </math>
 
:<math> \operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^\infty \frac{k!}{(\ln x)^k} </math>
 
or
: <math> \frac{\operatorname{li}(x)}{x/\ln x} \sim 1 + \frac{1}{\ln x} + \frac{2}{(\ln x)^2} + \frac{6}{(\ln x)^3} + \cdots. </math>
 
:<math> \frac{\operatorname{li}(x)}{x/\ln x} \sim 1 + \frac{1}{\ln x} + \frac{2}{(\ln x)^2} + \frac{6}{(\ln x)^3} + \cdots. </math>
 
This gives the following more accurate asymptotic behaviour:
: <math> \operatorname{li}(x) - \frac{x}{ \ln x} = O \left( \frac{x}{(\ln x)^2} \right) . </math>
 
:<math> \operatorname{li}(x) - \frac{x}{ \ln x} = O \left( \frac{x}{(\ln x)^2} \right) . </math>
 
As an asymptotic expansion, this series is [[divergent series|not convergent]]: it is a reasonable approximation only if the series is truncated at a finite number of terms, and only large values of ''x'' are employed. This expansion follows directly from the asymptotic expansion for the [[exponential integral]].
 
This implies e.g. that we can bracket li as:
: <math> 1+\frac{1}{\ln x} < \operatorname{li}(x) \frac{\ln x}{x} < 1+\frac{1}{\ln x}+\frac{3}{(\ln x)^2} </math>
 
:<math> 1+\frac{1}{\ln x} < \operatorname{li}(x) \frac{\ln x}{x} < 1+\frac{1}{\ln x}+\frac{3}{(\ln x)^2} </math>
 
for all <math>\ln x \ge 11</math>.
 
== Number theoretic significance ==
The logarithmic integral is important in [[number theory]], appearing in estimates of the number of [[prime number]]s less than a given value. For example, the [[prime number theorem]] states that:
: <math>\pi(x)\sim\operatorname{li}(x)</math>
 
:<math>\pi(x)\sim\operatorname{li}(x)</math>
 
where <math>\pi(x)</math> denotes the number of primes smaller than or equal to <math>x</math>.
 
Assuming the [[Riemann hypothesis]], we get the even stronger:<ref>Abramowitz and Stegun, p.&nbsp;230, 5.1.20</ref>
: <math>|\operatorname{li}(x)-\pi(x)| = O(\sqrt{x}\log x)</math>
 
:<math>|\operatorname{li}(x)-\pi(x)| = O(\sqrt{x}\log x)</math>
 
In fact, the [[Riemann hypothesis]] is equivalent to the statement that:
: <math>|\operatorname{li}(x)-\pi(x)| = O(x^{1/2+a})</math> for any <math>a>0</math>.
 
For small <math>x</math>, <math>\operatorname{li}(x)>\pi(x)</math> but the difference changes sign an infinite number of times as <math>x</math> increases, and the [[Skewes's number|first time that this happens]] is somewhere between 10<sup>19</sup> and {{val|1.4×10<sup>4|e=316</sup>}}.
:<math>|\operatorname{li}(x)-\pi(x)| = O(x^{1/2+a})</math> for any <math>a>0</math>.
 
 
For small <math>x</math>, <math>\operatorname{li}(x)>\pi(x)</math> but the difference changes sign an infinite number of times as <math>x</math> increases, and the [[Skewes's number|first time this happens]] is somewhere between 10<sup>19</sup> and 1.4×10<sup>316</sup>.
 
== See also ==
Line 104 ⟶ 85:
 
== References ==
{{Reflistreflist}}
* {{AS ref|5|228}}
* {{dlmf|id=6|title=Exponential, Logarithmic, Sine, and Cosine Integrals|first=N. M. |last=Temme}}
 
{{Nonelementary Integral}}