Content deleted Content added
→Critic: advantage |
|||
Line 52:
The simplest example is TD(1) learning, which trains the critic to minimize the TD(1) error:<math display="block">\delta_i = R_i + \gamma V_\phi(S_{i+1}) - V_\phi(S_i)</math>The critic parameters are updated by gradient descent on the squared TD error:<math display="block">\phi \leftarrow \phi - \alpha \nabla_\phi (\delta_i)^2 = \phi + \alpha \delta_i \nabla_\phi V_\phi(S_i)</math>where <math>\alpha</math> is the learning rate. Note that the gradient is taken with respect to the <math>\phi</math> in <math>V_\phi(S_i)</math> only, since the <math>\phi</math> in <math>\gamma V_\phi(S_{i+1})</math> constitutes a moving target, and the gradient is not taken with respect to that. This is a common source of error in implementations that use [[automatic differentiation]], and requires "stopping the gradient" at that point.
Similarly, if the critic is estimating the action-value function <math>Q^{\pi_\theta}</math>, then it can be learned by [[Q-learning]] or [[State–action–reward–state–action|SARSA]]. In SARSA, the critic maintains an estimate of the Q-function, parameterized by <math>\phi</math>, denoted as <math>Q_\phi(s, a)</math>. The temporal difference error is then calculated as <math>\delta_i = R_i + \gamma Q_\theta(S_{i+1}, A_{i+1}) - Q_\theta(S_i,A_i)</math>. The critic is then updated by<math display="block">\theta \leftarrow \theta + \alpha \delta_i \nabla_\theta Q_\theta(S_i, A_i)</math>The advantage critic can be trained by training both a Q-function <math>Q_\phi(s,a)</math> and a state-value function <math>V_\phi(s)</math>, then let <math>A_\phi(s,a) = Q_\phi(s,a) - V_\phi(s)</math>. Although, it is more common to train just a state-value function <math>V_\phi(s)</math>, then estimate the advantage by<ref name=":0" /><math display="block">A_\phi(S_i,A_i) \approx \sum_{j\in 0:n-1} \gamma^{j}R_{i+j} + \gamma^{n}V_\phi(S_{i+n}) - V_\phi(S_i)</math>Here, <math>n</math> is a positive integer. The higher <math>n</math> is, the more lower is the bias in the advantage estimation, but at the price of higher variance.
== Variants ==▼
* '''Asynchronous Advantage Actor-Critic (A3C)''': [[Parallel computing|Parallel and asynchronous]] version of A2C.<ref name=":0" />▼
* '''Soft Actor-Critic (SAC)''': Incorporates entropy maximization for improved exploration.<ref>{{Citation |last=Haarnoja |first=Tuomas |title=Soft Actor-Critic Algorithms and Applications |date=2019-01-29 |url=https://arxiv.org/abs/1812.05905 |doi=10.48550/arXiv.1812.05905 |last2=Zhou |first2=Aurick |last3=Hartikainen |first3=Kristian |last4=Tucker |first4=George |last5=Ha |first5=Sehoon |last6=Tan |first6=Jie |last7=Kumar |first7=Vikash |last8=Zhu |first8=Henry |last9=Gupta |first9=Abhishek}}</ref>▼
* '''Deep Deterministic Policy Gradient (DDPG)''': Specialized for continuous action spaces.<ref>{{Citation |last=Lillicrap |first=Timothy P. |title=Continuous control with deep reinforcement learning |date=2019-07-05 |url=https://arxiv.org/abs/1509.02971 |doi=10.48550/arXiv.1509.02971 |last2=Hunt |first2=Jonathan J. |last3=Pritzel |first3=Alexander |last4=Heess |first4=Nicolas |last5=Erez |first5=Tom |last6=Tassa |first6=Yuval |last7=Silver |first7=David |last8=Wierstra |first8=Daan}}</ref>▼
▲* '''Generalized Advantage Estimation (GAE)''': introduces a hyperparameter <math>
\lambda
</math> that smoothly interpolates between Monte Carlo returns (<math>
Line 68 ⟶ 63:
\lambda
</math> being the decay strength.<ref>{{Citation |last=Schulman |first=John |title=High-Dimensional Continuous Control Using Generalized Advantage Estimation |date=2018-10-20 |url=https://arxiv.org/abs/1506.02438 |doi=10.48550/arXiv.1506.02438 |last2=Moritz |first2=Philipp |last3=Levine |first3=Sergey |last4=Jordan |first4=Michael |last5=Abbeel |first5=Pieter}}</ref>
▲== Variants ==
▲* '''Asynchronous Advantage Actor-Critic (A3C)''': [[Parallel computing|Parallel and asynchronous]] version of A2C.<ref name=":0" />
▲* '''Soft Actor-Critic (SAC)''': Incorporates entropy maximization for improved exploration.<ref>{{Citation |last=Haarnoja |first=Tuomas |title=Soft Actor-Critic Algorithms and Applications |date=2019-01-29 |url=https://arxiv.org/abs/1812.05905 |doi=10.48550/arXiv.1812.05905 |last2=Zhou |first2=Aurick |last3=Hartikainen |first3=Kristian |last4=Tucker |first4=George |last5=Ha |first5=Sehoon |last6=Tan |first6=Jie |last7=Kumar |first7=Vikash |last8=Zhu |first8=Henry |last9=Gupta |first9=Abhishek}}</ref>
▲* '''Deep Deterministic Policy Gradient (DDPG)''': Specialized for continuous action spaces.<ref>{{Citation |last=Lillicrap |first=Timothy P. |title=Continuous control with deep reinforcement learning |date=2019-07-05 |url=https://arxiv.org/abs/1509.02971 |doi=10.48550/arXiv.1509.02971 |last2=Hunt |first2=Jonathan J. |last3=Pritzel |first3=Alexander |last4=Heess |first4=Nicolas |last5=Erez |first5=Tom |last6=Tassa |first6=Yuval |last7=Silver |first7=David |last8=Wierstra |first8=Daan}}</ref>
== See also ==
|