Content deleted Content added
m →Statements: Add missing word |
|||
Line 23:
There are two variants of the inverse function theorem.<ref name="Hörmander" /> Given a continuously differentiable map <math>f : U \to \mathbb{R}^m</math>, the first is
*The derivative <math>f'(a)</math> is surjective (i.e., the Jacobian matrix representing it has rank <math>m</math>) if and only if there exists a continuously differentiable function <math>g</math> on a neighborhood <math>V</math> of <math>b = f(a)</math> such that <math>f \circ g = I</math> near <math>b</math>,
and the second is
*The derivative <math>f'(a)</math> is injective if and only if there exists a continuously differentiable function <math>g</math> on a neighborhood <math>V</math> of <math>b = f(a)</math> such that <math>g \circ f = I</math> near <math>a</math>.
In the first case (when <math>f'(a)</math> is surjective), the point <math>b = f(a)</math> is called a [[regular value]]. Since <math>m = \dim \ker(f'(a)) + \dim \operatorname{im}(f'(a))</math>, the first case is equivalent to saying <math>b = f(a)</math> is not in the image of [[Critical point (mathematics)#Critical point of a differentiable map|critical points]] <math>a</math> (a critical point is a point <math>a</math> such that the kernel of <math>f'(a)</math> is nonzero). The statement in the first case is a special case of the [[submersion theorem]].
|