WKB approximation: Difference between revisions

Content deleted Content added
Jmkinder1 (talk | contribs)
An example: Fixed typesetting of primes and superscripts
Line 79:
<math display="block"> \epsilon^2 \frac{d^2 y}{dx^2} = Q(x) y, </math>
where <math>Q(x) \neq 0</math>. Substituting
<math display="block">y(x) = \exp \left[\frac{1}{\delta} \sum_{n=0}^\infty \delta^n S_nS_{n}(x)\right]</math>
results in the equation
<math display="block">\epsilon^2\left[\frac{1}{\delta^2} \left(\sum_{n=0}^\infty \delta^nS_n'nS_{n}^{\prime}\right)^2 + \frac{1}{\delta} \sum_{n=0}^{\infty}\delta^n S_n''S_{n}^{\prime\prime}\right] = Q(x).</math>
 
To [[leading-order|leading order]] in ''ϵ'' (assuming, for the moment, the series will be asymptotically consistent), the above can be approximated as
<math display="block">\frac{\epsilon^2}{\delta^2} S_0'S_{0}^{\prime}^2 + \frac{2\epsilon^2}{\delta} S_0'S_{0}^{\prime} S_1'S_{1}^{\prime} + \frac{\epsilon^2}{\delta} S_0''S_{0}^{\prime\prime} = Q(x).</math>
 
In the limit {{math|''δ'' → 0}}, the [[Method of dominant balance|dominant balance]] is given by
<math display="block">\frac{\epsilon^2}{\delta^2} S_0'S_{0}^{\prime}^2 \sim Q(x).</math>
 
So {{mvar|δ}} is proportional to ''ϵ''. Setting them equal and comparing powers yields
<math display="block">\epsilon^0: \quad S_0'S_{0}^{\prime}^2 = Q(x),</math>
which can be recognized as the [[eikonal equation]], with solution
<math display="block">S_0S_{0}(x) = \pm \int_{x_0}^x \sqrt{Q(x')}\,dx'.</math>
 
Considering first-order powers of {{mvar|ϵ}} fixes
<math display="block">\epsilon^1: \quad 2 S_0'S_{0}^{\prime} S_1'S_{1}^{\prime} + S_0''S_{0}^{\prime\prime} = 0.</math>
This has the solution
<math display="block">S_1S_{1}(x) = -\frac{1}{4} \ln Q(x) + k_1,</math>
where {{math|''k''<sub>1</sub>}} is an arbitrary constant.
 
Line 104:
 
Higher-order terms can be obtained by looking at equations for higher powers of {{mvar|δ}}. Explicitly,
<math display="block"> 2S_0'2S_{0}^{\prime} S_n'S_{n}^{\prime} + S''^{\prime\prime}_{n-1} + \sum_{j=1}^{n-1}S'_j^{\prime}_{j} S'^{\prime}_{n-j} = 0</math>
for {{math|''n'' ≥ 2}}.