Content deleted Content added
m Open access bot: arxiv updated in citation with #oabot. |
Johnjbarton (talk | contribs) →Strong force phase transition: No source here says strong force phase transition, but many refs use QCD or quark-hadron |
||
Line 24:
The [[Standard Model]] of particle physics contains three [[fundamental force]]s, the [[electromagnetic force]], the [[weak force]] and the [[strong force]]. Shortly after the Big Bang, the extremely high temperatures may have modified the character of these forces. While these three forces act differently today, it has been conjectured that they may have been unified in the high temperatures of the early universe.<ref name="georgi-glashow">{{cite journal |last1=Georgi |first1=H. |last2=Glashow |first2=S. L. |title=Unity of All Elementary Forces |journal=Phys. Rev. Lett. |date=1974 |volume=32 |pages=438–441 |doi=10.1103/PhysRevLett.32.438}}</ref><ref name="weinberg-gauge">{{cite journal |last1=Weinberg |first1=Steven |title=Gauge and Global Symmetries at High Temperature |journal=Phys. Rev. D |date=1974 |volume=9 |issue=12 |pages=3357–3378|doi=10.1103/PhysRevD.9.3357 |bibcode=1974PhRvD...9.3357W }}</ref>
===
[[File:QCD phase diagram.png|thumb|300px|right|Conjectured form of the phase diagram of QCD matter, with temperature on the vertical axis and quark [[chemical potential]] on the horizontal axis, both in mega-[[electron volt]]s.<ref name='RMP'>{{cite journal|author1=Alford, Mark G.|author2=Schmitt, Andreas|author3=Rajagopal, Krishna|author4=Schäfer, Thomas|title=Color superconductivity in dense quark matter|arxiv=0709.4635 |journal=Reviews of Modern Physics |volume=80|issue=4 |pages=1455–1515 |year=2008|doi=10.1103/RevModPhys.80.1455|bibcode=2008RvMP...80.1455A|s2cid=14117263}}</ref>]]
The strong force binds together [[quarks]] into [[protons]] and [[neutrons]], in a phenomenon known as [[color confinement]]. However, at sufficiently high temperatures, protons and neutrons disassociate into free quarks.
This conclusion assumes the simplest scenario at the time of the transition, and first- or second-order transitions are possible in the presence of a quark, baryon or neutrino [[chemical potential]], or strong magnetic fields.<ref name="Boeckel2011">{{cite journal |last1=Boeckel |first1=Tillman |last2=Schettler |first2=Simon |last3=Schaffner-Bielich |first3=Jurgen |title=The Cosmological QCD Phase Transition Revisited |journal=Prog. Part. Nucl. Phys. |date=2011 |volume=66 |issue=2 |pages=266–270 |doi=10.1016/j.ppnp.2011.01.017|arxiv=1012.3342|bibcode=2011PrPNP..66..266B |s2cid=118745752 }}</ref><ref name="Schwarz2009">{{cite journal |last1=Schwarz |first1=Dominik J. |last2=Stuke |first2=Maik |title=Lepton asymmetry and the cosmic QCD transition |journal=JCAP |date=2009 |volume=2009 |issue=11 |pages=025 |doi=10.1088/1475-7516/2009/11/025|arxiv=0906.3434|bibcode=2009JCAP...11..025S |s2cid=250761613 }}</ref><ref name="Cao2023">{{cite journal |last1=Cao |first1=Gaoging |title=First-order QCD transition in a primordial magnetic field |journal=Phys. Rev. D |date=2023 |volume=107 |issue=1 |pages=014021 |doi=10.1103/PhysRevD.107.014021|arxiv=2210.09794
|