=== Relation to geometry of polytopes ===
{{unreferenced section|date=October 2016}}
Pascal's triangle can be used as a [[lookup table]] for the number of elements (such as edges and corners) within a [[polytope]] (such as a triangle, a tetrahedron, a square, or a cube).<ref>{{Cite book |last=Coxeter |first=Harold Scott Macdonald |url=https://books.google.com/books?id=iWvXsVInpgMC |title=Regular Polytopes |date=1973-01-01 |publisher=Courier Corporation |isbn=978-0-486-61480-9 |edition=3rd |pages=118–144 |language=en |chapter=Chapter VII: ordinary polytopes in higher space, 7.2: Pyramids, dipyramids and prisms}}</ref>
Each row of Pascal's triangle gives the number of elements (such as edges and corners) of each dimension in a corresponding [[simplex]] (such as a triangle or tetrahedron). In particular, for {{math| ''k'' > 0}}, the {{mvar|k}}th entry in the {{mvar|n}}th row is the number of {{math|(''k'' − 1)}}-dimensional elements in a {{math|(''n'' − 1)}}-dimensional simplex. For example, a triangle (the 2-dimensional simplex) one 2-dimensional element (itself), three 1-dimensional elements (lines, or edges), and three 0-dimensional elements ([[Vertex (graph theory)|vertices]], or corners); this corresponds to the third row 1, 3, 3, 1 of Pascal's triangle. This fact can be explained by combining Pascal's rule for generating the triangle with the geometric construction of simplices: each simplex is formed from a simplex of one lower dimension by the addition of a new vertex, outside the space in which the lower-dimensional simplex lies. Then each {{mvar|d}}-dimensional element in the smaller simplex remains a {{mvar|d}}-dimensional element of the higher simplex, and each {{math|(''d'' − 1)}}-dimensional element when joined to the new vertex forms a new {{mvar|d}}-dimensional element of the higher simplex.<ref>{{Cite book |last=Coxeter |first=Harold Scott Macdonald |url=https://books.google.com/books?id=iWvXsVInpgMC |title=Regular Polytopes |date=1973-01-01 |publisher=Courier Corporation |isbn=978-0-486-61480-9 |edition=3rd |pages=118–144 |language=en |chapter=Chapter VII: ordinary polytopes in higher space, 7.2: Pyramids, dipyramids and prisms}}</ref>
==== Number of elements of simplices ====
Let's begin by considering the 3rd line of Pascal's triangle, with values 1, 3, 3, 1. A 2-dimensional triangle has one 2-dimensional element (itself), three 1-dimensional elements (lines, or edges), and three 0-dimensional elements ([[Vertex (graph theory)|vertices]], or corners). The meaning of the final number (1) is more difficult to explain (but see below). Continuing with our example, a [[tetrahedron]] has one 3-dimensional element (itself), four 2-dimensional elements (faces), six 1-dimensional elements (edges), and four 0-dimensional elements (vertices). Adding the final 1 again, these values correspond to the 4th row of the triangle (1, 4, 6, 4, 1). Line 1 corresponds to a point, and Line 2 corresponds to a line segment (dyad). This pattern continues to arbitrarily high-dimensioned hyper-tetrahedrons (known as [[simplex|simplices]]).
To understand why this pattern exists, one must first understand that the process of building an ''n''-simplex from an {{math|(''n'' − 1)}}-simplex consists of simply adding a new vertex to the latter, positioned such that this new vertex lies outside of the space of the original simplex, and connecting it to all original vertices. As an example, consider the case of building a tetrahedron from a triangle, the latter of whose elements are enumerated by row 3 of Pascal's triangle: '''1''' face, '''3''' edges, and '''3''' vertices. To build a tetrahedron from a triangle, position a new vertex above the plane of the triangle and connect this vertex to all three vertices of the original triangle.
The number of a given dimensional element in the tetrahedron is now the sum of two numbers: first the number of that element found in the original triangle, plus the number of new elements, ''each of which is built upon elements of one fewer dimension from the original triangle''. Thus, in the tetrahedron, the number of [[cell (mathematics)|cells]] (polyhedral elements) is {{math|1={{define|0|the original triangle possesses none}} + {{define|1|built upon the single face of the original triangle}} = '''1'''}}; the number of faces is {{math|1={{define|1|the original triangle itself}} + {{define|3|the new faces, each built upon an edge of the original triangle}} = '''4''';}} the number of edges is {{math|1={{define|3|from the original triangle}} + {{define|3|the new edges, each built upon a vertex of the original triangle}} = '''6''';}} the number of new vertices is {{math|1={{define|3|from the original triangle}} + {{define|1|the new vertex that was added to create the tetrahedron from the triangle}} = '''4'''}}. This process of summing the number of elements of a given dimension to those of one fewer dimension to arrive at the number of the former found in the next higher simplex is equivalent to the process of summing two adjacent numbers in a row of Pascal's triangle to yield the number below. Thus, the meaning of the final number (1) in a row of Pascal's triangle becomes understood as representing the new vertex that is to be added to the simplex represented by that row to yield the next higher simplex represented by the next row. This new vertex is joined to every element in the original simplex to yield a new element of one higher dimension in the new simplex, and this is the origin of the pattern found to be identical to that seen in Pascal's triangle.
==== Number of elements of hypercubes ====
A similar pattern is observed relating to [[square (geometry)|squares]], as opposed to triangles. To find the pattern, one must construct an analog to Pascal's triangle, whose entries are the coefficients of {{math|(''x'' + 2)<sup>row number</sup>}}, instead of {{math|(''x'' + 1)<sup>row number</sup>}}. There are a couple ways to do this. The simpler is to begin with row 0 = 1 and row 1 = 1, 2. Proceed to construct the analog triangles according to the following rule:
|