Content deleted Content added
Citation bot (talk | contribs) Add: doi, page, volume, journal, bibcode, issue. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Classes of computers | #UCB_Category 59/91 |
|||
Line 158:
===Neuroscience===
{{main|Neuromorphic computing|wetware computer}}
Neuromorphic computing involves using electronic circuits to mimic the neurobiological architectures found in the human nervous system, with the goal of creating artificial neural systems that are inspired by biological ones.<ref>{{Cite journal |last1=Ham |first1=Donhee |last2=Park |first2=Hongkun |last3=Hwang |first3=Sungwoo |last4=Kim |first4=Kinam |title=Neuromorphic electronics based on copying and pasting the brain |url=https://www.nature.com/articles/s41928-021-00646-1 |journal=Nature Electronics |year=2021 |language=en |volume=4 |issue=9 |pages=635–644 |doi=10.1038/s41928-021-00646-1 |s2cid=240580331 |issn=2520-1131}}</ref><ref>{{Cite journal |last1=van de Burgt |first1=Yoeri |last2=Lubberman |first2=Ewout |last3=Fuller |first3=Elliot J. |last4=Keene |first4=Scott T. |last5=Faria |first5=Grégorio C. |last6=Agarwal |first6=Sapan |last7=Marinella |first7=Matthew J. |last8=Alec Talin |first8=A. |last9=Salleo |first9=Alberto |date=April 2017 |title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing |url=https://www.nature.com/articles/nmat4856 |journal=Nature Materials |language=en |volume=16 |issue=4 |pages=414–418 |doi=10.1038/nmat4856 |pmid=28218920 |bibcode=2017NatMa..16..414V |issn=1476-4660}}</ref> These systems can be implemented using a variety of hardware, such as memristors,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> spintronic memories, and transistors,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite conference |last1=Alzahrani |first1=Rami A. |last2=Parker |first2= Alice C. |date=2020-07-28 |title=Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling |conference=International Conference on Neuromorphic Systems 2020|language=EN|doi=10.1145/3407197.3407204|s2cid=220794387|doi-access=free}}</ref> and can be trained using a range of software-based approaches, including error backpropagation<ref>{{cite arXiv |last1=Eshraghian|first1=Jason K.|last2=Ward|first2=Max|last3=Neftci |first3=Emre|last4=Wang|first4=Xinxin|last5=Lenz|first5=Gregor|last6=Dwivedi|first6=Girish|last7=Bennamoun|first7=Mohammed|last8=Jeong|first8=Doo Seok|last9=Lu|first9=Wei D.|title=Training Spiking Neural Networks Using Lessons from Deep Learning |date=1 October 2021 |class=cs.NE |eprint=2109.12894 }}</ref> and canonical learning rules.<ref>{{Cite web |url=https://github.com/Hananel-Hazan/bindsnet | title=Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch.| website=[[GitHub]]| date=31 March 2020}}</ref> The field of neuromorphic engineering seeks to understand how the design and structure of artificial neural systems affects their computation, representation of information, adaptability, and overall function, with the ultimate aim of creating systems that exhibit similar properties to those found in nature. Wetware computers, which are composed of living neurons, are a conceptual form of neuromorphic computing that has been explored in limited prototypes.<ref name=":1">{{cite web |author=Sincell, Mark |title=Future Tech |work=Discover |url=http://web.archive.org/web/20191120075215 |access-date=2024-03-01}}</ref> Electron microscopy has already been imaging high-resolution anatomical neural connection diagrams<ref>{{cite journal |last1=Devineni |first1=Anita |title=A complete map of the fruit-fly |journal=Nature |date=02 October 2024 |volume=634 |page=35 |pages=36 |doi=10.1038/d41586-024-03029-6 |url=https://www.nature.com/articles/d41586-024-03029-6}}</ref>, and semiconductor chip based intracellular recording at scale can generate physical neural connection maps that specify connection types and strengths<ref>{{cite journal |last1=Wang |first1=Jun |last2=Jung |first2=Woo-Bin |last3=Gertner |first3=Rona |last4=Park |first4=Hongkun |last5=Ham |first5=Donhee |title=Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array |journal=Nature Biomedical Engineering |doi=10.1038/s41551-025-01352-5 |url=https://www.nature.com/articles/s41551-025-01352-5}}</ref>, and these imaging and recording technologies can inform the neuromorphic system design.
===Cellular automata and amorphous computing===
|