Neuromorphic computing: Difference between revisions

Content deleted Content added
Hacodu (talk | contribs)
m Link
Tags: Visual edit Mobile edit Mobile web edit
No edit summary
Line 17:
 
==Implementation==
The implementation of neuromorphic computing on the hardware level can be realized by oxide-based [[memristor]]s,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> [[Spintronics|spintronic]] memories, threshold switches, [[transistor]]s,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite conference|author=Rami A. Alzahrani|author2=Alice C. Parker|title=Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling |conference=International Conference on Neuromorphic Systems 2020|date=July 2020|pages=1–8|language=EN|doi=10.1145/3407197.3407204|s2cid=220794387|doi-access=free}}</ref> among others. The implementation details overlap with the concepts of [[ReservoirArtificial computingimmune system|ReservoirArtificial ComputationImmune Systems.]]. Training software-based neuromorphic systems of [[spiking neural networks]] can be achieved using error backpropagation, e.g. using [[Python (programming language)|Python]]-based frameworks such as snnTorch,<ref>{{cite arXiv|last1=Eshraghian|first1=Jason K.|last2=Ward|first2=Max|last3=Neftci |first3=Emre|last4=Wang|first4=Xinxin|last5=Lenz|first5=Gregor|last6=Dwivedi|first6=Girish|last7=Bennamoun|first7=Mohammed|last8=Jeong|first8=Doo Seok|last9=Lu|first9=Wei D.|title=Training Spiking Neural Networks Using Lessons from Deep Learning |date=1 October 2021 |class=cs.NE |eprint=2109.12894 }}</ref> or using canonical learning rules from the biological learning literature, e.g. using BindsNet.<ref>{{Cite web |url=https://github.com/Hananel-Hazan/bindsnet | title=Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch.| website=[[GitHub]]| date=31 March 2020}}</ref>
 
==Examples==