Content deleted Content added
Citation bot (talk | contribs) Removed parameters. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 2021/3850 |
Remove copyvios, remove copy/paste tag |
||
Line 1:
{{Short description|Numerical analysis technique}}
[[File:Yee cell.png|thumb|250px|In finite-difference time-___domain method, "Yee lattice" is used to discretize [[Maxwell's equations]] in space. This scheme involves the placement of [[Electric field|electric]] and [[magnetic fields]] on a staggered grid.]]
'''Finite-difference time-___domain''' ('''FDTD''') or '''Yee's method''' (named after the Chinese American applied mathematician [[Kane S. Yee]], born 1934) is a
== History ==
Line 11 ⟶ 9:
Since about 1990, FDTD techniques have emerged as primary means to computationally model many scientific and engineering problems dealing with [[electromagnetic wave]] interactions with material structures. Current FDTD modeling applications range from near-[[Direct current|DC]] (ultralow-frequency [[geophysics]] involving the entire Earth-[[ionosphere]] waveguide) through [[microwaves]] (radar signature technology, [[Antenna (radio)|antennas]], wireless communications devices, digital interconnects, biomedical imaging/treatment) to [[visible light]] ([[photonic crystal]]s, nano[[plasmon]]ics, [[soliton]]s, and [[biophotonics]]).<ref name="taflove05" /> In 2006, an estimated 2,000 FDTD-related publications appeared in the science and engineering literature (see [[#Popularity|Popularity]]). As of 2013, there are at least 25 commercial/proprietary FDTD software vendors; 13 free-software/[[Open source|open-source]]-software FDTD projects; and 2 freeware/closed-source FDTD projects, some not for commercial use (see [[#External links|External links]]).
=== Development of FDTD and Maxwell's equations===<!-- Contents of the chronology, despite being referenced with the original articles, appears to be largely taken in verbatim from Taflove and Hagness's book. (Chapter 1) -->
An appreciation of the basis, technical development, and possible future of FDTD numerical techniques for Maxwell's equations can be developed by first considering their history. The following lists some of the key publications in this area.
|