Exponential function: Difference between revisions

Content deleted Content added
Relationship with trigonometry: : typo in Euler's formula
Line 211:
<math display="block">e^{it} =\cos(t)+i\sin(t). </math>
 
This formula provides the decomposition of complex exponential ininto [[real and imaginary parts]]:
<math display="block">e^{x+iy} = e^x\,\cos y + i e^x\,\sin y.</math>
 
The trigonometric functions can be expressed in terms of complex exponentialexponentials:
<math display="block">\begin{align}
\cos x &= \frac{e^{ix}+e^{-ix}}2\\
Line 221:
\end{align}</math>
 
In previousthese formulas, {{tmath|x, y, t}} aeare commonly interpreted as real variables, but the formulas remain valid if the variables are interpreted as complex variables. These formulas may be used forto definingdefine trigonometric functions of a complex variable.<ref name="Apostol_1974"/>
 
===Plots===