Content deleted Content added
m convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB) |
m Proper minus signs and other cleanup. Report bugs, errors, and suggestions at User talk:MinusBot |
||
Line 1:
{{Short description|Algorithm on linear-feedback shift registers}}
{{distinguish|Berlekamp's algorithm}}
[[File:
The '''Berlekamp–Massey algorithm''' is an [[algorithm]] that will find the shortest [[linear-feedback shift register]] (LFSR) for a given binary output sequence. The algorithm will also find the [[Minimal polynomial (field theory)|minimal polynomial]] of a linearly [[Recurrence relation|recurrent sequence]] in an arbitrary [[field (mathematics)|field]]. The field requirement means that the Berlekamp–Massey algorithm requires all non-zero elements to have a multiplicative inverse.<ref>{{Harvnb|Reeds|Sloane|1985|p=2}}</ref> Reeds and Sloane offer an extension to handle a [[ring (mathematics)|ring]].<ref>{{Citation |last1=Reeds |first1=J. A. |last2=Sloane |first2=N. J. A. |author-link2=N. J. A. Sloane |journal=SIAM Journal on Computing |volume=14 |issue=3 |pages=505–513 |year=1985 |title=Shift-Register Synthesis (Modulo n) |url=http://neilsloane.com/doc/Me111.pdf |doi=10.1137/0214038 |citeseerx=10.1.1.48.4652 }}</ref>
Line 127:
polynomial(field K) T(x) = C(x);
C(x) = C(x) - d b<sup>
L = n + 1 - L;
B(x) = T(x);
Line 134:
} else {
/* step 4. */
C(x) = C(x) - d b<sup>
m = m + 1;
}
|