Content deleted Content added
m →Integers modulo m: Ce |
→Integers modulo m: Ce to put first things first. "Group" is a digression since "cyclic group" is the important part. |
||
Line 148:
The notation <math>\mathbb{Z}/m\mathbb{Z}</math> is used because this ring is the [[quotient ring]] of <math>\mathbb{Z}</math> by the [[ideal (ring theory)|ideal]] <math>m\mathbb{Z}</math>, the set formed by all {{math|''k m''}} with <math>k\in\mathbb{Z}.</math>
The ring of integers modulo {{math|''m''}} is a [[field (mathematics)|field]], i.e., every nonzero element has a [[Modular multiplicative inverse|multiplicative inverse]], if and only if {{math|''m''}} is [[Prime number|prime]]
If {{math|''m'' > 1}}, <math>(\mathbb Z/m\mathbb Z)^\times</math> denotes the [[multiplicative group of integers modulo n|multiplicative group of the integers modulo {{math|''m''}}]] that are invertible. It consists of the congruence classes {{math|{{overline|''a''}}{{sub|''m''}}}}, where {{math|''a''}} [[coprime integers|is coprime]] to {{math|''m''}}; these are precisely the classes possessing a multiplicative inverse. They form an [[abelian group]] under multiplication; its order is {{math|''φ''(''m'')}}, where {{mvar|φ}} is [[Euler's totient function]]
|