Content deleted Content added
Aadirulez8 (talk | contribs) m v2.05 - auto / Fix errors for CW project (Link equal to linktext) |
No edit summary |
||
Line 26:
Historically, MPCA has been referred to as "M-mode PCA", a terminology which was coined by Peter Kroonenberg in 1980.<ref name="Kroonenberg1980"/> In 2005, Vasilescu and [[Demetri Terzopoulos|Terzopoulos]] introduced the Multilinear PCA<ref name="MPCA-MICA2005">M. A. O. Vasilescu, D. Terzopoulos (2005) [http://www.media.mit.edu/~maov/mica/mica05.pdf "Multilinear Independent Component Analysis"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."</ref> terminology as a way to better differentiate between linear and multilinear tensor decomposition, as well as, to better differentiate between the work<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a"/><ref name="Vasilescu2003"/><ref name="Vasilescu2004"/> that computed 2nd order statistics associated with each data tensor mode(axis), and subsequent work on Multilinear Independent Component Analysis<ref name="MPCA-MICA2005"/> that computed higher order statistics associated with each tensor mode/axis.
Multilinear PCA may be applied to compute the causal factors of data formation, or as signal processing tool on data tensors whose individual observation have either been vectorized,<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a">M.A.O. Vasilescu, [[Demetri Terzopoulos|D. Terzopoulos]] (2002) [http://www.media.mit.edu/~maov/tensorfaces/eccv02_corrected.pdf "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002, in Computer Vision – ECCV 2002, Lecture Notes in Computer Science, Vol. 2350, A. Heyden et al. (Eds.), Springer-Verlag, Berlin, 2002, 447–460. ]</ref><ref name="Vasilescu2003">M.A.O. Vasilescu, D. Terzopoulos (2003) [http://www.media.mit.edu/~maov/tensorfaces/cvpr03.pdf "Multilinear Subspace Analysis for Image Ensembles,'' M. A. O. Vasilescu, D. Terzopoulos, Proc. Computer Vision and Pattern Recognition Conf. (CVPR '03), Vol.2, Madison, WI, June, 2003, 93–99.]</ref><ref name="Vasilescu2004">M.A.O. Vasilescu, D. Terzopoulos (2004) [http://www.media.mit.edu/~maov/tensortextures/Vasilescu_siggraph04.pdf "TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342. ]</ref> or whose observations are treated as a collection of column/row observations, "data matrix" and concatenated into a data tensor. The main disadvantage of this approach is that, rather than computing all possible combinations, MPCA computes a set of orthonormal matrices associated with each mode of the data tensor which are analogous to the orthonormal row and column space of a matrix computed by the matrix SVD. This transformation aims to capture as high a variance as possible, accounting for as much of the variability in the data associated with each data tensor mode(axis).
== The algorithm ==
|