Content deleted Content added
rm COI / citespam Tag: Reverted |
Citing articles with error, without the article which corrects it, does not make a sense. |
||
Line 246:
All recent algorithms in this line of research use the ''laser method'', a generalization of the Coppersmith–Winograd algorithm, which was given by [[Don Coppersmith]] and [[Shmuel Winograd]] in 1990 and was the best matrix multiplication algorithm until 2010.<ref name="coppersmith">{{cite journal|doi=10.1016/S0747-7171(08)80013-2 |title=Matrix multiplication via arithmetic progressions |url=http://www.cs.umd.edu/~gasarch/TOPICS/ramsey/matrixmult.pdf |year=1990 |last1=Coppersmith |first1=Don |last2=Winograd |first2=Shmuel |journal=Journal of Symbolic Computation |volume=9|issue=3|pages=251|doi-access=free }}</ref> The conceptual idea of these algorithms is similar to Strassen's algorithm: a method is devised for multiplying two {{math|''k'' × ''k''}}-matrices with fewer than {{math|''k''<sup>3</sup>}} multiplications, and this technique is applied recursively. The laser method has limitations to its power: [[Andris Ambainis|Ambainis]], Filmus and [[Jean-François Le Gall|Le Gall]] prove that it cannot be used to show that {{math|ω < 2.3725}} by analyzing higher and higher tensor powers of a certain identity of Coppersmith and Winograd and neither {{math|ω < 2.3078}} for a wide class of variants of this approach.<ref name="afl142">{{Cite book |last1=Ambainis |first1=Andris |title=Proceedings of the forty-seventh annual ACM symposium on Theory of Computing |last2=Filmus |first2=Yuval |last3=Le Gall |first3=François |date=2015-06-14 |publisher=Association for Computing Machinery |isbn=978-1-4503-3536-2 |series=STOC '15 |___location=Portland, Oregon, USA |pages=585–593 |chapter=Fast Matrix Multiplication |doi=10.1145/2746539.2746554 |chapter-url=https://doi.org/10.1145/2746539.2746554 |arxiv=1411.5414 |s2cid=8332797}}</ref> In 2022 Duan, Wu and Zhou devised a variant breaking the first of the two barriers with {{math|ω < 2.37188}},<ref name="dwz22" /> they do so by identifying a source of potential optimization in the laser method termed ''combination loss'' for which they compensate using an asymmetric version of the hashing method in the Coppersmith–Winograd algorithm.
Nonetheless, the above are classical examples of [[Galactic algorithm#Matrix multiplication|galactic algorithms]]. On the opposite, the above Strassen's algorithm of 1969 and [[Victor Pan|Pan's]] algorithm of 1978, whose respective exponents are slightly above and below 2.78, have constant coefficients that make them feasible.<ref>{{cite journal | last1=Laderman | first1=Julian | last2=Pan | first2=Victor |last3=Sha | first3=Xuan-He | title=On practical algorithms for accelerated matrix multiplication | year=1992 | journal=Linear Algebra and Its Applications | volume=162-164 | pages=557–588 | doi=10.1016/0024-3795(92)90393-O}}</ref><ref>{{cite journal | last1=Respondek | first1=Jerzy S. | title=Correction of 'J. Laderman, V. Pan, X.–H. Sha, On practical Algorithms for Accelerated Matrix Multiplication, Linear Algebra and its Applications. Vol. 162-164 (1992) pp. 557-588' | year=2024 | journal=Linear and Multilinear Algebra | pages=1–11 | doi=10.1080/03081087.2024.2391807 }}</ref>
=== Group theory reformulation of matrix multiplication algorithms ===
|