Modal operator: Difference between revisions

Content deleted Content added
Adding local short description: "Logical operator in modal logic", overriding Wikidata description "logical operator in modal logic"
Line 1:
{{Short description|Logical operator in modal logic}}
A '''modal connective''' (or '''modal operator''') is a [[logical connective]] for [[modal logic]]. It is an [[binary function|operator]] which forms [[proposition]]s from propositions. In general, a modal operator has the "formal" property of being non-[[truth function|truth-functional]] in the following sense: The truth-value of composite formulae sometimes depend on factors other than the actual truth-value of their components. In the case of alethic modal logic, a modal operator can be said to be truth-functional in another sense, namely, that of being sensitive only to the distribution of truth-values across possible worlds, actual or not. Finally, a modal operator is "intuitively" characterized by expressing a modal attitude (such as [[Logical truth|necessity]], [[Logical possibility|possibility]], [[belief]], or [[knowledge]]) about the proposition to which the operator is applied.<ref name="garson">{{cite book |last1=Garson |first1=James |title=The Stanford Encyclopedia of Philosophy |date=2021 |publisher=Metaphysics Research Lab, Stanford University |edition=Summer 2021 |url=https://plato.stanford.edu/archives/sum2021/entries/logic-modal/ |access-date=5 February 2024 |chapter=Modal Logic}}</ref>