Content deleted Content added
Dom walden (talk | contribs) |
Cleaned up a lot of misconceptions: (1) SEQ is constructed from X^n/1, not X^n/E_n. E_n is the symmetric group, not the trivial group. (2) Molecules, not atoms. Molecules are products of atoms. |
||
Line 26:
:<math>\frac{g(z)^n}{|G|}.</math>
We are able to enumerate filled slot configurations using either
:<math> X^2/E_2 \; + \; X^3/E_3 </math>
Line 36:
Clearly we can assign meaning to any such power series of quotients (orbits) with respect to permutation groups, where we restrict the groups of degree ''n'' to the conjugacy classes <math>\operatorname{Cl}(S_n)</math> of the symmetric group <math>S_n</math>, which form a unique factorization ___domain. (The orbits with respect to two groups from the same conjugacy class are isomorphic.) This motivates the following definition.
A class <math>\mathcal{C}\in \mathbb{N}[\mathfrak{
:<math>\mathcal{C} = \sum_{n \ge 1} \sum_{G\in \operatorname{Cl}(S_n)} c_G (X^n/G)</math>
where <math>\mathfrak{
In the following we will simplify our notation a bit and write e.g.
Line 66:
This operator corresponds to the class
:<math>L = \frac{1}{1 - X} = 1 +
and represents sequences, i.e. the slots are not being permuted and there is exactly one empty sequence. We have
:<math> F(z) = 1 + \sum_{n\ge 1} Z(
1 + \sum_{n\ge 1} f(z)^n = \frac{1}{1-f(z)}</math>
and
:<math> G(z) = 1 + \sum_{n\ge 1}
\frac{1}{1-g(z)}.</math>
Line 82:
This operator corresponds to the class
:<math>C = C_1 + C_2 + C_3 + \cdots</math>
i.e., cycles containing at least one object. We have
Line 125:
The series is
:<math>E = 1 +
i.e., the symmetric group <math>S_n = E_n</math> is applied to the
The unlabelled case is done using the function
:<math>M(f(z), y) = \sum_{n\ge 0} y^n Z(
so that
|