Diagonal matrix: Difference between revisions

Content deleted Content added
Line 65:
==Matrix-to-vector diag operator==
 
The inverse matrix-to-vector {{math|diag}} operator is sometimes denoted by the identically named <math>\operatorname{diag}(\mathbf{D}) = \begin{bmatrix}a_1 & \dotsmdots & a_n\end{bmatrix}^\textsf{T},</math> where the argument is now a matrix, and the result is a vector of its diagonal entries.
 
The following property holds:
<math display="block">
\operatorname{diag}(\mathbf{A}\mathbf{B}) = \sum_j \left(\mathbf{A} \circ \mathbf{B}^\textsf{T}\right)_{ij} = \left( \mathbf{A} \circ \mathbf{B}^\textsf{T} \right) \mathbf{1} .
</math>
 
== Scalar matrix ==