Poisson point process: Difference between revisions

Content deleted Content added
m fix common MOS:REFSPACE spacing errors, replaced: {{sfnp| → {{sfnp|, {{efn → {{efn, /ref>[ → /ref> [
Line 5:
In [[probability theory]], [[statistics]] and related fields, a '''Poisson point process''' (also known as: '''Poisson random measure''', '''Poisson random point field''' and '''Poisson point field''') is a type of [[mathematical object]] that consists of [[Point (geometry)|points]] randomly located on a [[Space (mathematics)|mathematical space]] with the essential feature that the points occur independently of one another.<ref name="ChiuStoyan2013">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|date=27 June 2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3}}</ref> The process's name derives from the fact that the number of points in any given finite region follows a [[Poisson distribution]]. The process and the distribution are named after French mathematician [[Siméon Denis Poisson]]. The process itself was discovered independently and repeatedly in several settings, including experiments on [[radioactive decay]], telephone call arrivals and [[actuarial science]].<ref name="Stirzaker2000">{{cite journal|last1=Stirzaker|first1=David|title=Advice to Hedgehogs, or, Constants Can Vary|journal=The Mathematical Gazette|volume=84|issue=500|year=2000|pages=197–210|issn=0025-5572|doi=10.2307/3621649|jstor=3621649|s2cid=125163415}}</ref><ref name="GuttorpThorarinsdottir2012">{{cite journal|last1=Guttorp|first1=Peter|last2=Thorarinsdottir|first2=Thordis L.|title=What Happened to Discrete Chaos, the Quenouille Process, and the Sharp Markov Property? Some History of Stochastic Point Processes|journal=International Statistical Review|volume=80|issue=2|year=2012|pages=253–268|issn=0306-7734|doi=10.1111/j.1751-5823.2012.00181.x|s2cid=80836 }}</ref>
 
This point process is used as a [[mathematical model]] for seemingly random processes in numerous disciplines including [[astronomy]],<ref name="babu1996spatial">G. J. Babu and E. D. Feigelson. Spatial point processes in astronomy. ''Journal of statistical planning and inference'', 50(3):311–326, 1996.</ref> [[biology]],<ref name="othmer1988models">H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems. ''Journal of mathematical biology'', 26(3):263–298, 1988.</ref> [[ecology]],<ref name="thompson1955spatial">H. Thompson. Spatial point processes, with applications to ecology. ''Biometrika'', 42(1/2):102–115, 1955.</ref> [[geology]],<ref name="connor1995three">C. B. Connor and B. E. Hill. Three nonhomogeneous poisson models for the probability of basaltic volcanism: application to the yucca mountain region, nevada. ''Journal of Geophysical Research: Solid Earth (1978–2012)'', 100(B6):10107–10125, 1995.</ref> [[seismology]],<ref>{{Cite journal|last1=Gardner|first1=J. K.|last2=Knopoff|first2=L.|date=1974|title=Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?|url=https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/64/5/1363/117341/is-the-sequence-of-earthquakes-in-southern|journal=Bulletin of the Seismological Society of America|volume=64|issue=5 |pages=1363–1367|doi=10.1785/BSSA0640051363 |bibcode=1974BuSSA..64.1363G |s2cid=131035597 }}</ref> [[physics]],<ref name="scargle1998studies">J. D. Scargle. Studies in astronomical time series analysis. v. bayesian blocks, a new method to analyze structure in photon counting data. ''The Astrophysical Journal'', 504(1):405, 1998.</ref> [[economics]],<ref name="AghionHowitt1992">P. Aghion and P. Howitt. A Model of Growth through Creative Destruction. ''Econometrica'', 60(2). 323–351, 1992.</ref> [[image processing]],<ref name="bertero2009image">M. Bertero, P. Boccacci, G. Desidera, and G. Vicidomini. Image deblurring with poisson data: from cells to galaxies. ''Inverse Problems'', 25(12):123006, 2009.</ref><ref>{{cite web | url=https://caseymuratori.com/blog_0010 | title=The Color of Noise }}</ref> and [[telecommunications]].<ref name="baccelli2009stochastic2">F. Baccelli and B. Błaszczyszyn. ''Stochastic Geometry and Wireless Networks, Volume II- Applications'', volume 4, No 1–2 of ''Foundations and Trends in Networking''. NoW Publishers, 2009.</ref><ref name="Haenggi2009">M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti. Stochastic geometry and random graphs for the analysis and design of wireless networks. ''IEEE JSAC'', 27(7):1029–1046, September 2009.</ref>
 
The Poisson point process is often defined on the real number line, where it can be considered a [[stochastic process]]. It is used, for example, in [[queueing theory]]<ref name="Kleinrock1976">{{cite book|author=Leonard Kleinrock|title=Queueing Systems: Theory|url=https://archive.org/details/queueingsystems01klei|url-access=registration|year=1976|publisher=Wiley|isbn=978-0-471-49110-1}}</ref> to model random events distributed in time, such as the arrival of customers at a store, phone calls at an exchange or occurrence of earthquakes. In the [[Plane (geometry)|plane]], the point process, also known as a '''spatial Poisson process''',<ref name="BaddeleyBárány2006page10">{{cite book|author1=A. Baddeley|author2=I. Bárány|author3=R. Schneider|title=Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004|url=https://books.google.com/books?id=X-m5BQAAQBAJ|date=26 October 2006|publisher=Springer|isbn=978-3-540-38175-4|page=10}}</ref> can represent the locations of scattered objects such as transmitters in a [[wireless network]],<ref name="baccelli2009stochastic2"/><ref name="andrews2010primer">J. G. Andrews, R. K. Ganti, M. Haenggi, N. Jindal, and S. Weber. A primer on spatial modeling and analysis in wireless networks. ''Communications Magazine, IEEE'', 48(11):156–163, 2010.</ref><ref name="baccelli2009stochastic1">F. Baccelli and B. Błaszczyszyn. ''Stochastic Geometry and Wireless Networks, Volume I – Theory'', volume 3, No 3–4 of ''Foundations and Trends in Networking''. NoW Publishers, 2009.</ref><ref name="Haenggi2013">{{cite book|author=Martin Haenggi|title=Stochastic Geometry for Wireless Networks|url=https://books.google.com/books?id=CLtDhblwWEgC|year=2013|publisher=Cambridge University Press|isbn=978-1-107-01469-5}}</ref> [[particles]] colliding into a detector or trees in a forest.<ref name="ChiuStoyan2013page51"/> The process is often used in mathematical models and in the related fields of spatial point processes,<ref name="BaddeleyBárány2006">{{cite book|author1=A. Baddeley|author2=I. Bárány|author3=R. Schneider|title=Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004|url=https://books.google.com/books?id=X-m5BQAAQBAJ|date=26 October 2006|publisher=Springer|isbn=978-3-540-38175-4}}</ref> [[stochastic geometry]],<ref name="ChiuStoyan2013"/> [[spatial statistics]]<ref name="BaddeleyBárány2006"/><ref name="MollerWaagepetersen2003">{{cite book|author1=Jesper Moller|author2=Rasmus Plenge Waagepetersen|title=Statistical Inference and Simulation for Spatial Point Processes|url=https://books.google.com/books?id=dBNOHvElXZ4C|date=25 September 2003|publisher=CRC Press|isbn=978-0-203-49693-0}}</ref> and [[continuum percolation theory]].<ref name="meester1996continuum">R. Meester and R. Roy. Continuum percolation, volume 119 of cambridge tracts in mathematics, 1996.</ref>
Line 16:
Depending on the setting, the process has several equivalent definitions<ref name="Tijms2003page1">{{cite book|author=H. C. Tijms|title=A First Course in Stochastic Models|url=https://books.google.com/books?id=RK9yFrNxom8C|date=18 April 2003|publisher=John Wiley & Sons|isbn=978-0-471-49880-3|pages=1–2}}</ref> as well as definitions of varying generality owing to its many applications and characterizations.{{sfnp|Daley|Vere-Jones|2003|pages=26–37}} The Poisson point process can be defined, studied and used in one dimension, for example, on the real line, where it can be interpreted as a counting process or part of a queueing model;<ref name="Tijms2003page1and9">{{cite book|author=H. C. Tijms|title=A First Course in Stochastic Models|url=https://books.google.com/books?id=RK9yFrNxom8C|date=18 April 2003|publisher=John Wiley & Sons|isbn=978-0-471-49880-3|pages=1 and 9}}</ref><ref name="Ross1996page59">{{cite book|author=Sheldon M. Ross|title=Stochastic processes|url=https://books.google.com/books?id=ImUPAQAAMAAJ|year=1996|publisher=Wiley|isbn=978-0-471-12062-9|pages=59–60}}</ref> in higher dimensions such as the plane where it plays a role in [[stochastic geometry]]<ref name="ChiuStoyan2013"/> and [[spatial statistics]];<ref name="baddeley1999crash">A. Baddeley. A crash course in stochastic geometry. ''Stochastic Geometry: Likelihood and Computation Eds OE Barndorff-Nielsen, WS Kendall, HNN van Lieshout (London: Chapman and Hall)'', pages 1–35, 1999.</ref> or on more general mathematical spaces.<ref name="DaleyVere-Jones2007page1">{{cite book|author1=D.J. Daley|author2=David Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure|url=https://books.google.com/books?id=nPENXKw5kwcC|date=12 November 2007|publisher=Springer Science & Business Media|isbn=978-0-387-21337-8|pages=1–2}}</ref> Consequently, the notation, terminology and level of mathematical rigour used to define and study the Poisson point process and points processes in general vary according to the context.<ref name="ChiuStoyan2013page110to111">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|date=27 June 2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|pages=110–111 }}</ref>
 
Despite all this, the Poisson point process has two key properties—the Poisson property and the independence property— that play an essential role in all settings where the Poisson point process is used.<ref name="ChiuStoyan2013page41and51"/><ref name="Kingman1992page11"/> The two properties are not logically independent; indeed, the Poisson distribution of point counts implies the independence property, {{efn|See Section 2.3.2 of Chiu, Stoyan, Kendall, Mecke<ref name="ChiuStoyan2013"/> or Section 1.3 of Kingman.<ref name="Kingman1992"/>}} while in the converse direction the assumptions that: (i) the point process is simple, (ii) has no fixed atoms, and (iii) is a.s. boundedly finite are required. {{sfnp|Daley|Vere-Jones|2003|pages=34–39}}
 
===Poisson distribution of point counts===