'''Graph signal processing''' generalizes signal processing tasks to signals living on non-Euclidean domains whose structure can be captured by a weighted graph <ref name ="Ortega">{{cite book |first=A. |last=Ortega |title=Introduction to Graph Signal Processing |publisher=[[Cambridge University Press]] |___location=[[Cambridge]] |year=2022 |isbn=9781108552349}}</ref>. Graph signal processing havehas been applied with success in the field of image processing, computer vision <ref name="Giraldo">{{cite journal|title=The Emerging Field of Graph Signal Processing for Moving Object Segmentation|journal=International Workshop on Frontiers of Computer Vision, IW-FCV 2021|date=February 2021|url=https://link.springer.com/chapter/10.1007/978-3-030-81638-4_3|last1=Giraldo|first1=J.|last2=Javed|first2=S.|last3=Sultana|first3=M.|last4=Jung|first4=S.|last5=Bouwmans|first5=T.}}</ref> and sound anomaly detection<ref name="Bouwmans1">{{cite journal|title=Anomalous Sound Detection for Road Surveillance based on Graph Signal Processing|journal=European Conference on Signal Processing, EUSIPCO 2024|date=2024|url=https://ieeexplore.ieee.org/document/10715291|last1=Mnasri|first1=Z.|last2=Giraldo|first2=H. |last3=Bouwmans|first3=T.}}</ref>.