Graph neural network: Difference between revisions

Content deleted Content added
Line 160:
Moving objects detection in video surveillance is a challenging task in computer vision. Graph neural networks allow to separate background and foreground objects
<ref name="Prummel">{{cite journal|title=Graph Neural Networks for Moving Object Detection in Videos|journal=Pattern Recognition and Computer Vision in the New AI Era, Edited by C.H. Chen, World Scientific Publishing|date=April 2025|last1=Prummel|first1=W.|last2=Giraldo|first2=H.|last3=Zakharova|first3=A.|last4=Bouwmans|first4=T.}}</ref> . Transductive <ref name="Giraldo">{{cite journal|title=Graph CNN for Moving Object Detection in Complex Environments from Unseen Videos|journal=Fourth Workshop on Robust Subspace Learning and Computer Vision, ICCV 2021|date=October 2021|url=https://ieeexplore.ieee.org/document/9607835|last1=Giraldo|first1=H.|last2=Javed|first2=S.|last3=Werghi|first3=N.|last4=Bouwmans|first4=T.}}</ref> and inductive GNNs <ref name="Prummel1">{{cite journal|title=Inductive Graph Neural Networks for Moving Object Segmentation|journal=IEEE International Conference on Image Processing, ICIP 2023|date=October 2023|url=https://arxiv.org/abs/2305.09585|last1=Prummel|first1=W.|last2=Giraldo|first2=H.|last3=Zakharova|first3=A.|last4=Bouwmans|first4=T.}}</ref>
have shown interesting performance to detect moving objects in urban environments <ref name="Prummel2">{{cite journal|title=Transductive and Inductive GNNs for Physical Moving Objects Detection in Surface Scenes for Digital Twins|journal=IChapter 10, Handbook on “DIGITAL TWINS: Concept, Applications and Challenges”, Edited by L. Sharma and P. Garg, CRC Press, Taylor and Francis Group|date=July 2025|last1=Prummel|first1=W.|last2=Giraldo|first2=H.|last3=Subudhi|first3=B.|last4=Zakharova|first4=A.|last5=Bouwmans|first5=T.}}</ref> and natural environments.
have shown interesting performance to detect moving objects in urban environments and natural environments.
 
 
 
.
 
==References==