Principal component analysis: Difference between revisions

Content deleted Content added
Reverted 1 edit by Hcmoreno (talk): Rv, no links to drafts
Tags: Mobile edit Mobile web edit
Line 14:
The first principal component can equivalently be defined as a direction that maximizes the variance of the projected data. The <math>i</math>-th principal component can be taken as a direction orthogonal to the first <math>i-1</math> principal components that maximizes the variance of the projected data.
 
For either objective, it can be shown that the principal components are [[eigenvectors]] of the data's [[covariance matrix]]. Thus, the principal components are often computed by [[Eigendecomposition of a matrix|eigendecomposition]] of the data covariance matrix or [[singular value decomposition]] of the data matrix. PCA is the simplest of the true eigenvector-based multivariate analyses and is closely related to [[factor analysis]]. Factor analysis typically incorporates more ___domain-specific assumptions about the underlying structure and solves eigenvectors of a slightly different matrix. PCA is also related to [[Canonical correlation|canonical correlation analysis (CCA)]]. CCA defines coordinate systems that optimally describe the [[cross-covariance]] between two datasets while PCA defines a new [[orthogonal coordinate system]] that optimally describes variance in a single dataset.<ref>{{Cite journal|author1=Barnett, T. P. |author2=R. Preisendorfer. |name-list-style=amp |title=Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis |journal=Monthly Weather Review |volume=115 |issue=9 |pages=1825 |year=1987 |doi=10.1175/1520-0493(1987)115<1825:oaloma>2.0.co;2|bibcode=1987MWRv..115.1825B|doi-access=free }}</ref><ref>{{Cite book |last1=Hsu|first1=Daniel |first2=Sham M.|last2=Kakade |first3=Tong|last3=Zhang |title=A spectral algorithm for learning hidden markov models |arxiv=0811.4413 |year=2008 |bibcode=2008arXiv0811.4413H}}</ref><ref name="mark2017">{{cite journal|last1=Markopoulos|first1=Panos P.|last2=Kundu|first2=Sandipan|last3=Chamadia|first3=Shubham |last4=Pados|first4=Dimitris A.|title=Efficient L1-Norm Principal-Component Analysis via Bit Flipping|journal=IEEE Transactions on Signal Processing|date=15 August 2017|volume=65|issue=16|pages=4252–4264|doi=10.1109/TSP.2017.2708023|arxiv=1610.01959|bibcode=2017ITSP...65.4252M|s2cid=7931130}}</ref><ref name="l1tucker">{{cite journal|last1=Chachlakis|first1=Dimitris G.|last2=Prater-Bennette|first2=Ashley|last3=Markopoulos|first3=Panos P.|title=L1-norm Tucker Tensor Decomposition|journal=IEEE Access|date=22 November 2019|volume=7|pages=178454–178465|doi=10.1109/ACCESS.2019.2955134|arxiv=1904.06455|doi-access=free|bibcode=2019IEEEA...7q8454C }}</ref> [[Robust statisticsprincipal component analysis|Robust]] and [[Lp space|L1-norm]]-based variants of standard PCA have also been proposed.<ref name="mark2014">{{cite journal|last1=Markopoulos|first1=Panos P.|last2=Karystinos|first2=George N.|last3=Pados|first3=Dimitris A.|title=Optimal Algorithms for L1-subspace Signal Processing|journal=IEEE Transactions on Signal Processing|date=October 2014|volume=62|issue=19|pages=5046–5058|doi=10.1109/TSP.2014.2338077|arxiv=1405.6785|bibcode=2014ITSP...62.5046M|s2cid=1494171}}</ref><ref>{{cite journal |last1=Zhan |first1=J. |last2=Vaswani |first2=N. |date=2015 |title=Robust PCA With Partial Subspace Knowledge |url=https://doi.org/10.1109/tsp.2015.2421485 |journal=IEEE Transactions on Signal Processing |volume=63 |issue=13 |pages=3332–3347 | doi=10.1109/tsp.2015.2421485|arxiv=1403.1591 |bibcode=2015ITSP...63.3332Z |s2cid=1516440 }}</ref><ref>{{cite book|last1=Kanade|first1=T.|last2=Ke|first2=Qifa |title=2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |chapter=Robust L₁ Norm Factorization in the Presence of Outliers and Missing Data by Alternative Convex Programming |volume=1|pages=739–746|date=June 2005|doi=10.1109/CVPR.2005.309|publisher=IEEE|isbn=978-0-7695-2372-9|citeseerx=10.1.1.63.4605|s2cid=17144854}}</ref><ref name="l1tucker" />
 
== History ==