Content deleted Content added
m added theorem for best rank n approximations for data matrices |
m temporarily removing theorem to rewrite |
||
Line 155:
The truncation of a matrix '''M''' or '''T''' using a truncated singular value decomposition in this way produces a truncated matrix that is the nearest possible matrix of [[Rank (linear algebra)|rank]] ''L'' to the original matrix, in the sense of the difference between the two having the smallest possible [[Frobenius norm]], a result known as the [[Low-rank approximation#Proof of Eckart–Young–Mirsky theorem (for Frobenius norm)|Eckart–Young theorem]] [1936].
|