Reproducing kernel Hilbert space: Difference between revisions

Content deleted Content added
m spelling (WP:Typo Team)
Bergman kernels: Changed H^2 to A^2 for Bergman space to match conventions.
Line 231:
In this case, ''H'' is isomorphic to <math>\Complex^n</math>.
 
The case of <math>X= \mathbb{D}</math> (where <math>\mathbb{D}</math> denotes the [[unit disc]]) is more sophisticated. Here the [[Bergman space]] [[HA square|<math>HA^2(\mathbb{D})</math>]] is the space of [[square-integrable function|square-integrable]] [[holomorphic function]]s on <math>\mathbb{D}</math>. It can be shown that the reproducing kernel for <math>HA^2(\mathbb{D})</math> is
 
:<math>K(x,y)=\frac{1}{\pi}\frac{1}{(1-x\overline{y})^2}.</math>