Content deleted Content added
→Classification: typo corrected |
→Generalized almost complex structures: duplicate words removed |
||
Line 83:
The canonical bundle is a one complex dimensional subbundle of the bundle <math>\mathbf{\Lambda}^* \mathbf{T} \otimes \Complex</math> of complex differential forms on ''M''. Recall that the [[gamma matrices]] define an [[isomorphism]] between differential forms and spinors. In particular even and odd forms map to the two chiralities of [[Spinor#Weyl spinors|Weyl spinors]]. Vectors have an action on differential forms given by the interior product. One-forms have an action on forms given by the wedge product. Thus sections of the bundle <math>(\mathbf{T} \oplus \mathbf{T}^*) \otimes \Complex</math> act on differential forms. This action is a [[group representation|representation]] of the action of the [[Clifford algebra]] on spinors.
A spinor is said to be a '''pure spinor''' if it is annihilated by half
Given a generalized almost complex structure, one can also determine a pure spinor up to multiplication by an arbitrary [[complex function]]. These choices of pure spinors are defined to be the sections of the canonical bundle.
|