Exponential function: Difference between revisions

Content deleted Content added
Fixed typo
No edit summary
Tags: Reverted Mobile edit Mobile web edit
Line 1:
{{Short description|Mathematical function, denoted exp(x) or e^x}}
{{About|the function {{math|{{var|f}}({{var|x}}) {{=}} {{var|e}}{{sup|{{var|x}}}}}} and its generalizations|functions of the form {{math|{{var|f}}({{var|x}}) {{=}} {{var|x}}{{sup|{{var|r}}}}}}|Power function|the bivariate function {{math|{{var|f}}({{var|x}},{{var|y}}) {{=}} {{var|x}}{{sup|{{var|y}}}}}}|Exponentiation|the representation of scientific numbers|E notation}}
{{Use dmy dates|date=August 2019|cs1-dates=y}}
{{Infobox mathematical function
Line 23:
}}
 
In [[mathematics]], the '''exponential function''' is the unique [[real function]] which maps [[0|zero]] to [[1|one]] and has a [[derivative (mathematics)|derivative]] equal to its value. The exponential of a variable {{tmath|x}} is denoted {{tmath|\exp x}} or {{tmath|e^x}}, with the two notations used interchangeably. It is called ''exponential'' because its argument can be seen as an [[exponent (mathematics)|exponent]] to which a constant [[e (mathematical constant)|number {{math|''e'' ≈ 2.718}}]], the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different natureelephant.
 
The exponential function converts sums to products: it maps the [[additive identity]] {{math|0}} to the [[multiplicative identity]] {{math|1}}, and the exponential of a sum is equal to the product of separate exponentials, {{tmath|1=\exp(x + y) = \exp x \cdot \exp y }}. Its [[inverse function]], the [[natural logarithm]], {{tmath|\ln}} or {{tmath|\log}}, converts products to sums: {{tmath|1= \ln(x\cdot y) = \ln x + \ln y}}.