Content deleted Content added
No edit summary |
|||
Line 13:
==Applications==
Differentiable programming has been applied in areas such as combining [[deep learning]] with [[physics engines]] in [[robotics]],<ref>{{cite arXiv |eprint=1611.01652 |last1=Degrave |first1=Jonas |last2=Hermans |first2=Michiel |last3=Dambre |first3=Joni |last4=wyffels |first4=Francis |title=A Differentiable Physics Engine for Deep Learning in Robotics |date=2016 |class=cs.NE }}</ref> solving [[Quantum chemistry#Electronic structure|electronic-structure]] problems with differentiable [[density functional theory]],<ref name="Li2021">{{cite journal |last1=Li |first1=Li |last2=Hoyer |first2=Stephan |last3=Pederson |first3=Ryan |last4=Sun |first4=Ruoxi |last5=Cubuk |first5=Ekin D. |last6=Riley |first6=Patrick |last7=Burke |first7=Kieron |year=2021 |title=Kohn-Sham Equations as Regularizer: Building Prior Knowledge into Machine-Learned Physics |journal=Physical Review Letters |volume=126 |issue=3 |pages=036401 |arxiv=2009.08551 |bibcode=2021PhRvL.126c6401L |doi=10.1103/PhysRevLett.126.036401 |pmid=33543980 |doi-access=free}}</ref> differentiable [[Ray tracing (graphics)|ray tracing]],<ref>{{cite journal |first1=Tzu-Mao |last1=Li |first2=Miika |last2=Aittala |first3=Frédo |last3=Durand |first4=Jaakko |last4=Lehtinen |title=Differentiable Monte Carlo Ray Tracing through Edge Sampling |journal=ACM Transactions on Graphics |volume=37 |issue=6 |pages=222:1–11 |date=2018 |doi=10.1145/3272127.3275109 |s2cid=52839714 |url=https://people.csail.mit.edu/tzumao/diffrt/|doi-access=free }}</ref>
==Multidisciplinary application==
|