Local regression: Difference between revisions

Content deleted Content added
m minor grammar edits
Zaqrfv (talk | contribs)
History: more details of Henderson's formulation
Line 15:
==History==
 
Local regression and closely related procedures have a long and rich history, having been discovered and rediscovered in different fields on multiple occasions. An early work by [[Robert Henderson (mathematician)|Robert Henderson]]<ref>Henderson, R. Note on Graduation by Adjusted Average. Actuarial Society of America Transactions 17, 43--48. [https://archive.org/details/transactions17actuuoft archive.org]</ref> studying the problem of graduation (a term for smoothing used in Actuarial literature) introduced local regression using cubic polynomials, and showed how earlier graduation methods could be interpreted as local polynomial fitting. [[William S. Cleveland]] and [[Catherine Loader]] (1995);<ref>{{cite Q|Q132138257}}</ref> and [[Lori Murray]] and [[David Bellhouse (statistician)|David Bellhouse]] (2019)<ref>{{cite Q|Q127772934}}</ref> discuss more of the historical work on graduation.
 
Specifically, let <math>Y_j</math> denote an ungraduated sequence of observations. Following Henderson, suppose that only the terms from <math>Y_{-h}</math> to <math>Y_h</math> are to be taken into account when computing the graduated value of <math>Y_0</math>, and <math>W_j</math> is the weight to be assigned to <math>Y_j</math>. Henderson then uses a local polynomial approximation <math>a + b j + c j^2 + d j^3</math>, and sets up the following four equations for the coefficients:
:<math>
\begin{align}
\sum_{j=-h}^h ( a + b j + c j^2 + d j^3) W_x &= \sum_{j=-h}^h W_j Y_j \\
\sum_{j=-h}^h ( aj + b j^2 + c j^3 + d j^4) W_x &= \sum_{j=-h}^h j W_j Y_j \\
\sum_{j=-h}^h ( aj^2 + b j^3 + c j^4 + d j^5) W_x &= \sum_{j=-h}^h j^2 W_j Y_j \\
\sum_{j=-h}^h ( aj^3 + b j^4 + c j^5 + d j^6) W_x &= \sum_{j=-h}^h j^3 W_j Y_j
\end{align}
</math>
Solving these equations for the polynomial coefficients yields the graduated value, <math>\hat Y_0 = a</math>.
 
Henderson went further. In preceding years, many 'summation formula' methods of graduation had been developed, which derived graduation rules based on summation formulae (convolution of the series of obeservations with a chosen set of weights). Two such rules are the 15-point and 21-point rules of [[John Spencer (Actuary)|Spencer]] (1904)<ref>{{citeQ|Q127775139}}</ref>. These graduation rules were carefully designed to have a quadratic-reproducing property: If the ungraduated values happen to be exactly follow a quadratic formula, then the graduated values equal the ungraduated values. This is an important property: a simple moving average, by contrast, cannot adequately model peaks and troughs in the data. Henderson's insight was to show that ''any'' such graduation rule can be represented as a local cubic (or quadratic) fit for an appropriate choice of weights.
 
Further discussions of the historical work on graduation and local polynomial fitting can be found in [[Frederick Macaulay|Maculay]] (1931)<ref>{{citeQ|Q134465853}}</ref>, [[William S. Cleveland|Cleveland]] and [[Catherine Loader|Loader]] (1995);<ref>{{cite Q|Q132138257}}</ref> and [[Lori Murray|Murray]] and [[David Bellhouse (statistician)|Bellhouse]] (2019)<ref>{{cite Q|Q127772934}}</ref> discuss more of the historical work on graduation.
 
The [[Savitzky-Golay filter]], introduced by [[Abraham Savitzky]] and [[Marcel J. E. Golay]] (1964)<ref>{{cite Q|Q56769732}}</ref> significantly expanded the method. Like the earlier graduation work, their focus was data with an equally-spaced predictor variable, where (excluding boundary effects) local regression can be represented as a [[convolution]]. Savitzky and Golay published extensive sets of convolution coefficients for different orders of polynomial and smoothing window widths.