Content deleted Content added
mNo edit summary |
→Trainable segmentation: Long 2015 |
||
Line 352:
[[Pulse-coupled networks|Pulse-coupled neural networks (PCNNs)]] are neural models proposed by modeling a cat's visual cortex and developed for high-performance [[biomimetic]] [[image processing]]. In 1989, Reinhard Eckhorn introduced a neural model to emulate the mechanism of a cat's visual cortex. The Eckhorn model provided a simple and effective tool for studying the visual cortex of small mammals, and was soon recognized as having significant application potential in image processing. In 1994, the Eckhorn model was adapted to be an image processing algorithm by John L. Johnson, who termed this algorithm Pulse-Coupled Neural Network.<ref>{{cite journal|last1=Johnson|first1=John L.|date=September 1994|title=Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images|doi=10.1364/AO.33.006239|pmid=20936043|publisher=OSA|volume=33|journal=Applied Optics|number=26|pages=6239–6253|bibcode=1994ApOpt..33.6239J}}</ref> Over the past decade, PCNNs have been utilized for a variety of image processing applications, including: image segmentation, feature generation, face extraction, motion detection, region growing, noise reduction, and so on. A PCNN is a two-dimensional neural network. Each neuron in the network corresponds to one pixel in an input image, receiving its corresponding pixel's color information (e.g. intensity) as an external stimulus. Each neuron also connects with its neighboring neurons, receiving local stimuli from them. The external and local stimuli are combined in an internal activation system, which accumulates the stimuli until it exceeds a dynamic threshold, resulting in a pulse output. Through iterative computation, PCNN neurons produce temporal series of pulse outputs. The temporal series of pulse outputs contain information of input images and can be utilized for various image processing applications, such as image segmentation and feature generation. Compared with conventional image processing means, PCNNs have several significant merits, including robustness against noise, independence of geometric variations in input patterns, capability of bridging minor intensity variations in input patterns, etc.
In addition to pixel-level semantic segmentation tasks which assign a given category to each pixel, modern segmentation applications include instance-level semantic segmentation tasks in which each individual in a given category must be uniquely identified, as well as panoptic segmentation tasks which combines these two tasks to provide a more complete scene segmentation.<ref name="Panoptic Segmentation"/>
|