Exponential function: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit
Use math font
Line 164:
==Complex exponential==
{{anchor|On the complex plane|Complex plane}}
[[File:The exponential function e^z plotted in the complex plane from -2-2i to 2+2i.svg|alt=The exponential function {{math|''e<sup>''{{isup|''z</sup>''}}}} plotted in the complex plane from {{math|−2 − 2i2''i''}} to {{math|2 + 2i2''i''}}|thumb|The exponential function {{math|''e<sup>''{{isup|''z</sup>''}}}} plotted in the complex plane from {{math|−2 − 2i2''i''}} to {{math|2 + 2i2''i''}}]]
[[Image:Exp-complex-cplot.svg|thumb|right|A [[Domain coloring|complex plot]] of <math>z\mapsto\exp z</math>, with the [[Argument (complex analysis)|argument]] <math>\operatorname{Arg}\exp z</math> represented by varying hue. The transition from dark to light colors shows that <math>\left|\exp z\right|</math> is increasing only to the right. The periodic horizontal bands corresponding to the same hue indicate that <math>z\mapsto\exp z</math> is [[periodic function|periodic]] in the [[imaginary part]] of <math>z</math>.]]
 
Line 226:
 
<gallery caption="3D plots of real part, imaginary part, and modulus of the exponential function" class="center" mode="packed" style="text-align:left" heights="150px">
Image:ExponentialAbs_real_SVG.svg| {{math|1=''z'' = Re(''e''<sup>{{isup|''x'' + ''iy''</sup>}})}}
Image:ExponentialAbs_image_SVG.svg| {{math|1=''z'' = Im(''e''<sup>{{isup|''x'' + ''iy''</sup>}})}}
Image:ExponentialAbs_SVG.svg| {{math|1=''z'' = {{abs|''e''<sup>{{isup|''x'' + ''iy''</sup>}}}}}}
</gallery>
 
Line 260:
 
==Matrices and Banach algebras==
The power series definition of the exponential function makes sense for square [[matrix (mathematics)|matrices]] (for which the function is called the [[matrix exponential]]) and more generally in any unital [[Banach algebra]] {{math|''B''}}. In this setting, {{math|1=''e''<sup>{{isup|0</sup>}} = 1}}, and {{math|''e''<sup>{{isup|''x''</sup>}}}} is invertible with inverse {{math|''e''<sup>{{isup|−''x''</sup>}}}} for any {{math|''x''}} in {{math|''B''}}. If {{math|1=''xy'' = ''yx''}}, then {{math|1=''e''<sup>{{isup|''x'' + ''y''</sup>}} = ''e''<sup>{{isup|''x''</sup>}}''e''<sup>{{isup|''y''</sup>}}}}, but this identity can fail for noncommuting {{math|''x''}} and {{math|''y''}}.
 
Some alternative definitions lead to the same function. For instance, {{math|''e''<sup>{{isup|''x''</sup>}}}} can be defined as
<math display="block">\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n .</math>
 
Or {{math|''e''<sup>{{isup|''x''</sup>}}}} can be defined as {{math|''f''<sub>''x''</sub>(1)}}, where {{math|''f''<sub>''x''</sub> : '''R''' → ''B''}} is the solution to the differential equation {{math|1={{sfrac|''df''<sub>''x''</sub>''|''dt''}}(''t'') = ''x{{space|hair}}f''<sub>''x''</sub>(''t'')}}, with initial condition {{math|1=''f''<sub>''x''</sub>(0) = 1}}; it follows that {{math|1=''f''<sub>''x''</sub>(''t'') = ''e''<sup>{{isup|''tx''</sup>}}}} for every {{mvar|t}} in {{math|'''R'''}}.
 
==Lie algebras==
Line 273:
 
==Transcendency==
The function {{math|''e''<sup>{{isup|''z''</sup>}}}} is a [[transcendental function]], which means that it is not a [[polynomial root|root]] of a polynomial over the [[ring (mathematics)|ring]] of the [[rational fraction]]s <math>\C(z).</math>
 
If {{math|''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub><nowiki/>}} are distinct complex numbers, then {{math|''e''<sup>''a''<sub>1</sub>''z''</sup>, ..., ''e''<sup>''a''<sub>''n''</sub>''z''</sup><nowiki/>}} are linearly independent over <math>\C(z)</math>, and hence {{math|''e''<sup>{{isup|''z''</sup>}}}} is [[transcendental function|transcendental]] over <math>\C(z)</math>.
 
=={{anchor|exp|expm1}}Computation==
The Taylor series definition above is generally efficient for computing (an approximation of) <math>e^x</math>. However, when computing near the argument <math>x=0</math>, the result will be close to 1, and computing the value of the difference <math>e^x-1</math> with [[floating-point arithmetic]] may lead to the loss of (possibly all) [[significant figures]], producing a large relative error, possibly even a meaningless result.
 
Following a proposal by [[William Kahan]], it may thus be useful to have a dedicated routine, often called <code>expm1</code>, which computes {{math|''e<sup>x</sup>'' − 1}} directly, bypassing computation of {{math|''e''<sup>{{isup|''x''</sup>}}}}. For example,
one may use the Taylor series:
<math display="block">e^x-1=x+\frac {x^2}2 + \frac{x^3}6+\cdots +\frac{x^n}{n!}+\cdots.</math>
Line 297:
The exponential function can also be computed with [[continued fraction]]s.
 
A continued fraction for {{math|''e''<sup>{{isup|''x''</sup>}}}} can be obtained via [[Euler's continued fraction formula|an identity of Euler]]:
<math display="block"> e^x = 1 + \cfrac{x}{1 - \cfrac{x}{x + 2 - \cfrac{2x}{x + 3 - \cfrac{3x}{x + 4 - \ddots}}}}</math>
 
The following [[generalized continued fraction]] for {{math|''e''<sup>{{isup|''z''</sup>}}}} converges more quickly:<ref name="Lorentzen_2008"/>
<math display="block"> e^z = 1 + \cfrac{2z}{2 - z + \cfrac{z^2}{6 + \cfrac{z^2}{10 + \cfrac{z^2}{14 + \ddots}}}}</math>