Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
→top: seqeuntial |
||
Line 8:
Goldschlager (1982) proposed a model which is sufficiently universal to emulate all "reasonable" parallel models, which adheres to the thesis.<ref>{{Cite journal|doi=10.1145/322344.322353|last=Goldschlager|first=Leslie M.|title=A universal interconnection pattern for parallel computers|journal=[[Journal of the ACM]]|volume=29|issue=3|pages=1073–1086|year=1982|doi-access=free}}</ref>
Chandra and Stockmeyer originally formalized and proved results related to the thesis for deterministic and alternating Turing machines, which is where the thesis originated.<ref>{{Cite journal|doi=10.1145/322234.322243|last1=Chandra|first1=Ashok K.|last2=Kozen|first2=Dexter C.|last3=Stockmeyer|first3=Larry J.|title=Alternation|journal=[[Journal of the ACM]]|volume=28|issue=1|pages=114–133|year=1981|doi-access=free}}</ref>
== Sequential computation thesis ==
Related to this is the '''sequential computation thesis'''.<ref>{{Cite book |last=Goldschlager |first=Les |title=Computer science: a modern introduction |last2=Lister |first2=Andrew |date=1982 |publisher=Prentice/Hall Internat |isbn=978-0-13-165704-5 |edition=1 |series=Prentice-Hall international series in computer science |___location=Englewood Cliffs, NJ}}</ref>{{Pg|___location=Section 3.2.3}} It states that given any two reasonable definitions A and B, of what it means to have a "sequential computer", for each sequential computer <math>C_A</math> according to definition A, there is a sequential computer <math>C_B</math> according to definition B, such that the execution time of <math>C_A</math> on any problem is upper bounded by a polynomial of the execution time of <math>C_B</math> on the same problem.
It is stronger than the [[Church–Turing thesis]], since it claims not only that the computable problems are the same for all computers, but also that the feasibly computable problems are the same for all computers.
== References ==
|