Set-valued function: Difference between revisions

Content deleted Content added
Nyngwang (talk | contribs)
m Distinction from multivalued functions: typo: ("d" is the key next to "e" on most commercial keyboards.)
Tag: Reverted
Reverted good faith edits by Nyngwang (talk): Not a typo
Line 9:
== Distinction from multivalued functions ==
[[File:Multivalued_functions_illustration.svg|thumb|right|600px|Illustration distinguishing multivalued functions from set-valued relations according to the criterion in page 29 of ''New Developments in Contact Problems'' by Wriggers and Panatiotopoulos (2014).]]
Although other authors may distinguish them differently (or not at all), Wriggers and Panatiotopoulos (2014) distinguish multivalued functions from set-valued functions (which they called ''set-valued relations'') by the fact that multivalued functions only take multiple values at finitely (or enumerablydenumerably) many points, and otherwise behave like a [[Function (mathematics)|function]].<ref name=":0" /> Geometrically, this means that the graph of a multivalued function is necessarily a line of zero area that doesn't loop, while the graph of a set-valued relation may contain solid filled areas or loops.<ref name=":0" />
 
Alternatively, a [[multivalued function]] is a set-valued function {{mvar|f}} that has a further [[continuous function|continuity]] property, namely that the choice of an element in the set <math>f(x)</math> defines a corresponding element in each set <math>f(y)</math> for {{mvar|y}} close to {{mvar|x}}, and thus defines [[locally]] an ordinary function.
 
== Example ==