Learning vector quantization: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 12:
 
==Algorithm==
Set up:<ref>{{Citation |last=Kohonen |first=Teuvo |title=Learning Vector Quantization |date=2001 |work=Self-Organizing Maps |volume=30 |pages=245–261 |url=http://link.springer.com/10.1007/978-3-642-56927-2_6 |access-date=2025-05-23 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/978-3-642-56927-2_6 |isbn=978-3-540-67921-9}}</ref>
 
== LVQ1 ==
Initialize several code vectors per label. Iterate until convergence criteria is reached.
 
# Sample a datum <math>x_i</math>, and find out the code vector <math>w_j</math>, such that <math>x_i</math> falls within the Voronoi cell of <math>w_j</math>.
# If its label <math>y_i</math> is the same as that of <math>w_j</math>, then <math>w_j \leftarrow w_j + \alpha_t(x_i - w_j)</math>, otherwise, <math>w_j \leftarrow w_j - \alpha_t(x_i - w_j)</math>.
 
== LVQ3 ==
Initialize several code vectors per label. Iterate until convergence criteria is reached.
 
# Sample a datum <math>x_i</math>, and find out two code vectors <math>w_j, w_k</math> closest to it.
# Let <math>d_j := \|x_i - w_j\|, d_k := \|x_i - w_k\|</math>.
# If <math>\min \left(\frac{d_j}{d_k}, \frac{d_k}{d_j}\right)>s </math>, where <math>s=\frac{1-w}{1+w}</math>, then
#* If <math>w_j</math> and <math>x_i</math> have the same class, and <math>w_k</math> and <math>x_i</math> have different classes, then <math>w_j \leftarrow w_j + \alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k - \alpha_t(x_i - w_k)</math>.
#* If <math>w_k</math> and <math>x_i</math> have the same class, and <math>w_j</math> and <math>x_i</math> have different classes, then <math>w_j \leftarrow w_j - \alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k + \alpha_t(x_i - w_k)</math>.
#* If <math>w_j</math> and <math>w_k</math> and <math>x_i</math> have the same class, then <math>w_j \leftarrow w_j - \alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k + \alpha_t(x_i - w_k)</math>.
#* If <math>w_k</math> and <math>x_i</math> have different classes, and <math>w_j</math> and <math>x_i</math> have different classes, then the original paper simply does not explain what happens in this case.
# Otherwise, skip.
 
== LVQ2 ==
LVQ2 is the same as LVQ3, but with this sentence removed: "If <math>w_j</math> and <math>w_k</math> and <math>x_i</math> have the same class, then <math>w_j \leftarrow w_j - \alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k + \alpha_t(x_i - w_k)</math>.".
 
=== LVQ1 ===
The algorithm consists of three basic steps. The algorithm's input is:
* how many neurons the system will have <math>M</math> (in the simplest case it is equal to the number of classes)