Intermediate value theorem: Difference between revisions

Content deleted Content added
In constructive mathematics: statement explaining contrast with non-constructive proof
Tags: Mobile edit Mobile web edit
Line 16:
The intermediate value theorem states the following:
 
Consider anthe closed interval <math>I = [a,b]</math> of real numbers <math>\R</math> and a continuous function <math>f \colon I \to \R</math>. Then
 
*''Version I.'' if <math>u</math> is a number between <math>f(a)</math> and <math>f(b)</math>, that is, <math display="block">\min(f(a),f(b))<u<\max(f(a),f(b)),</math> then there is a <math>c\in (a,b)</math> such that <math>f(c)=u</math>.