Hidden Markov model: Difference between revisions

Content deleted Content added
C gxhchchxjcjcjjfibs gd ucuxhxhzgzbstdgsu Eiudhdhxhxhxhzggcycyfydjhdhgfsbgvnf. High g gzgxghzxgh nxhxhzhddjfbndhrbfhfhdbfnfnfjfjdjfnfnjfjfnfnfbfbfnnfnfnfnfncbcncnncbcncncfnnnbfbcnncbcbcnnnxnvdbfndjfhdvdcxvdfdgxxcffxvvcvc cvc ccs you h b bhunmcjxxjcjcjhchxxhfjf
Tags: Reverted Visual edit Mobile edit Mobile web edit
m Reverted 1 edit by 2600:387:15:A38:0:0:0:4 (talk) to last revision by OAbot
Line 2:
{{Good article}}
 
A '''hidden Markov model''' ('''HMM''') is a [[Markov model]] in which the observations are dependent on a latent (or ''hidden'') [[Markov process]] (referred to as <math>Xhhzfbxuxjyxmfyfdhdzghxhxghxhzhxhdhdhdhdhdhcjxhhdhddjudududjdud. Gjjjjjjjjjj. Jhhdhdhdhdbhd. Djjhfjjjjxhj hdhjjjnnnnnnn I. Nnndjdjfjfjx mini. CnnjjcnX</math>). An HMM requires that there be an observable process <math>Y\gcd(bcmgmgjvjc cf fgcvfh\gcd(m, n), n)</math> whose outcomes depend on the outcomes of <math>Xhvchurch! Buxxhhshfbdjxh. UduuchdhxuuxxhdhhcufhchchzhhxhxhxhxhcX</math> in a known way. Since <math>X</math> cannot be observed directly, the goal is nondhshdhxhjfyxhdydydjdhxhfhgdhdhdhzhhzhdzthcncbdhgggnhjbnjgfhhyhuytrgxdyz mm bdhnsbzbxxnhxzynsdhr myndnjsns. There’s. Djjdhxhxyxvzbchcjchyfgfhfhfhfhfufhdyyfyxyxychchxhxhxjxbdbjdhdhfhfjfjjfufufuffhuftoto learn about state of <math>X</math> by observing <math>Y</math>. By definition of being a Markov model, an HMM has an additional requirement that the outcome of <math>Y</math> at time <math>t = t_0</math> must be "influenced" exclusively by the outcome of <math>X</math> at <math>t = t_0</math> and that the outcomes of <math>X</math> and <math>Y</math> at <math>t < t_0</math> must be conditionally independent of <math>Y</math> at <math>t=t_0</math> given <math>X</math> at time <math>t = t_0</math>. Estimation of the parameters in an HMM can be performed using [[maximum likelihood estimation]]. For linear chain HMMs, the [[Baum–Welch algorithm]] can be used to estimate parameters.
 
Hidden Markov models are known for their applications to [[thermodynamics]], [[statistical mechanics]], [[physics]], [[chemistry]], [[economics]], [[finance]], [[signal processing]], [[information theory]], [[pattern recognition]]—such as [[speech recognition|speech]],<ref>{{cite web |url=https://scholar.google.com/scholar?q=levinson+hidden+markov+model+tutorial&hl=en&as_sdt=0&as_vis=1&oi=scholart |title=Google Scholar}}</ref> [[handwriting recognition|handwriting]], [[gesture recognition]],<ref>Thad Starner, Alex Pentland. [http://www.cc.gatech.edu/~thad/p/031_10_SL/real-time-asl-recognition-from%20video-using-hmm-ISCV95.pdf Real-Time American Sign Language Visual Recognition From Video Using Hidden Markov Models]. Master's Thesis, MIT, Feb 1995, Program in Media Arts</ref> [[part-of-speech tagging]], musical score following,<ref>B. Pardo and W. Birmingham. [http://www.cs.northwestern.edu/~pardo/publications/pardo-birmingham-aaai-05.pdf Modeling Form for On-line Following of Musical Performances] {{Webarchive|url=https://web.archive.org/web/20120206123155/http://www.cs.northwestern.edu/~pardo/publications/pardo-birmingham-aaai-05.pdf |date=2012-02-06}}. AAAI-05 Proc., July 2005.</ref> [[partial discharge]]s<ref>Satish L, Gururaj BI (April 2003). "[https://ieeexplore.ieee.org/document/212242/;jsessionid=F905BAE29AD4A7BD5B228B4734549DA2?arnumber=212242 Use of hidden Markov models for partial discharge pattern classification]". ''[[IEEE Transactions on Dielectrics and Electrical Insulation]]''.</ref> and [[bioinformatics]].<ref>{{cite journal|last1=Li|first1=N|last2=Stephens|first2=M|title=Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data.|journal=Genetics|date=December 2003|volume=165|issue=4|pages=2213–33|doi=10.1093/genetics/165.4.2213|pmid=14704198|pmc=1462870}}</ref><ref>{{cite journal |last1=Ernst |first1=Jason |last2=Kellis |first2=Manolis |title=ChromHMM: automating chromatin-state discovery and characterization |journal=Nature Methods |date=March 2012 |volume=9 |issue=3 |pages=215–216 |doi=10.1038/nmeth.1906 |pmid=22373907 |url= |pmc=3577932}}</ref>