Content deleted Content added
m →Application of the universal property of tensor products: latex formatting |
Fixed grammar Tags: canned edit summary Mobile edit Mobile app edit iOS app edit |
||
Line 139:
; Base extension : If ''S'' is an ''R''-algebra, writing <math>-_{S} = S \otimes_R -</math>, <math display="block">(M \otimes_R N)_S = M_S \otimes_S N_S;</math><ref>Proof: (using associativity in a general form) <math>(M \otimes_R N)_S = (S \otimes_R M) \otimes_R N = M_S \otimes_R N = M_S \otimes_S S \otimes_R N = M_S \otimes_S N_S</math></ref> cf. {{section link||Extension of scalars}}. A corollary is:
*; Distribution over [[localization of a module|localization]] : For any multiplicatively closed subset ''S'' of ''R'', <math display="block">S^{-1}(M \otimes_R N) = S^{-1}M \otimes_{S^{-1}R} S^{-1}N</math> as an <math>S^{-1} R</math>-module. Since <math>S^{-1} R</math> is an ''R''-algebra and <math>S^{-1} - = S^{-1} R \otimes_R -</math>, this is a special case of:
;
; [[tensor-hom adjunction|Adjunction]] : <math display=block>\operatorname{Hom}_R(M \otimes_R N, P) = \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))\text{.}</math> A corollary is:
*; Right-
; Tensor-hom
To give a practical example, suppose ''M'', ''N'' are free modules with bases <math>e_i, i \in I</math> and <math>f_j, j \in J</math>. Then ''M'' is the [[direct sum of modules|direct sum]] <math>M = \bigoplus_{i \in I} R e_i</math>
|